ChemNet
 
Химический факультет МГУ

Бутин К.П. Теоретическая стереохимия/ Органическая химия

8.4. Методы определения конфигурации

8.4.1. Определение абсолютной конфигурации

Для определения абсолютной конфигурации применяются два метода: экспериментальное исследование аномальной дифракции рентгеновских лучей на ядрах тяжелых атомов и теоретический расчет величины оптического вращения.

8.4.1.а. Дифракция рентгеновских лучей

Благодаря тому, что рентгеновские лучи при прохождении через кристаллы дают дифракционную картину, метод рентгено-структурного анализа (РСА) широко используется для установления строения химических соединений. Когда дифракция происходит на электронных оболочках легких атомов (C,H,N,O,F,Cl), характер наблюдаемой интерференциальной картины определяется только наличием самих ядер, но не их природой. Это объясняется тем, что легкие атомы лишь рассеивают рентгеновские лучи, но не поглощают их, и поэтому в ходе эксперимента не происходит изменения фазы рассеянного излучения.

Тяжелые атомы не только рассеивают, но и поглощают рентгеновские лучи в определенных областях кривой поглощения. Если длина волны падающего излучения совпадает с начальным слабо поглощающим участком этой кривой, то наблюдается не только обычная дифракция, но также и некоторый сдвиг по фазе рассеянного излучения, обусловленный тем, что часть его поглощается. Это явление называется аномальным рассеянием рентгеновских лучей. При наличии лишь легких атомов РСА позволяет определить межъядерные расстояния между связанными и несвязанными атомами и на их основе сделать выводы о строении данной молекулы и о наличии в ней хиральных элементов. В этом случае различить энантиомеры нельзя. Однако при наличии тяжелых атомов характер аномального рассеяния зависит не только от расстояния между атомами, но и от относительного расположения в пространстве. Явление аномальной дифракции рентгеновских лучей позволяет непосредственно определить абсолютные конфигурации молекул, содержащих тяжелые атомы, а также молекул, в которые тяжелые атомы могут быть введены в качестве специальных меток.

Впервые такой анализ был проведен Бейфутом в 1951 г, который на основании того, что Кa -излучение циркония совпадает с началом полосы поглощения рубидия, а La -излучение урана - с началом полосы поглощения брома, впервые установил абсолютную конфигурацию (+)-натрийрубидийтартрата (XXVIII) и гидробромида (-)-изолейцина (XXIX).

После установления абсолютной конфигурации соединения XXVIII выяснилось, что ранее произвольно выбранная конфигурация (+)-глицеринового альдегида, оказалось, как это ни удивительно, угаданной правильно.

В настоящее время с помощью РСА определена абсолютная конфигурация нескольких сотен соединений. Следует сказать, что анализ аномальных дифракционных картин вручную чрезвычайно трудоемкий процесс. Однако с помощью современных автоматических дифрактометров, снабженных ЭВМ, на это уходит всего несколько дней.

8.4.1.б. Теоретический расчет оптического вращения

В 1952 г был опубликован квантово-химический расчет оптического вращения знантиомеров на примере транс-2,3-эпоксибутана (XXX). Конфигурация этого эпоксида может быть скоррелирована с конфигурацией винной кислоты и далее с глицериновым альдегидом. При этом снова обнаружилось, что ранее произвольно выбранная стереоформула D-глицеринового альдегида совершенно правильна и нет необходимости изменять принятое в литературе в течение многих лет изображение этой конфигурации.

8.4.2. Определение относительной конфигурации

При определении относительной конфигурации соединение с неизвестной конфигурацией соотносят с другим соединением, конфигурация которого уже известна. Рассмотрим наиболее важные из этих методов.

8.4.2.а. Химическая корреляция

Химические методы, которые могут быть использованы для установления относительных конфигураций, очень разнообразны и настолько тесно переплетены с общим материалом органической химии, что встречаются практически во всех главах этой книги, посвященных рассмотрению отдельных классов органических соединений. Поэтому здесь мы рассмотрим на нескольких примерах лишь основные принципы их применения.

Первая группа методов связана с превращением соединения с неизвестной конфигурацией в соединение с известной конфигурацией или образованием неизвестной конфигурации из известной без нарушения хирального элемента, например, хирального центра. Поскольку в ходе превращения хиральный центр не затрагивается, очевидно, что продукт должен иметь ту же конфигурацию, что и исходное соединение.

При этом вовсе не обязательно, что если неизвестное соединение относится к (R)-ряду, то и известное будет иметь (R)-конфигурацию. Например, при восстановлении (R)-1-бром-2-бутанола в 2-бутанол, не затрагивающем хиральный центр, продуктом будет (S)-изомер несмотря на то, что его конфигурация не изменилась. Это связано с тем, что группа СH3CH2 определению (см. раздел 8.3.3.) младше группы BrCH2, но старше группы СН3.

Одним из многих примеров химической корреляции является установление относительной конфигурации D-галактозы (XXXI) путем ее окисления. Поскольку этот процесс приводит к образованию оптически неактивной дикарбоновой кислоты, относительная конфигурация ее четырех хиральных центров может соответствовать или структуре XXXII, или структуре XXXIII. Но дикарбоновая кислота (XXXIV), полученная из галактозы путем окислительного отщепления альдегидного атома углерода, оптически активна. Следовательно, D-галактоза имеет относительную конфигурациию, показанную формулой XXXI.

Аналогичные превращения с L-галактозой дают такие же результаты, за исключением противоположного знака оптического вращения. Следовательно, подобным путем можно выяснить лишь относительную конфигурацию исследуемых молекул (в данном случае XXXI и XXXII), но не их абсолютные конфигурации.

Ниже приведен пример конфигурационной корреляции (+)-винной кислоты с (+)-(R)-глицериновым альдегидом на основе превращений, не затрагивающих асимметрический центр.

Вторая группа методов химической корреляции основана на превращении при хиральном центре, механизм которого точно известен. Так, реакция SN2 происходит с обращением (инверсией) конфигурации реакционного центра (см.гл.9 ). С помощью последовательности таких реакций конфигурация (+)-молочной кислоты была скоррелирована с конфигурацией (S)-(+)-аланина.

Следует подчеркнуть, что понятие "обращение" или "сохранение" конфигурации применимо и к ахиральным реакционным центрам и служит для указания конкретного механизма реакции. Однако, когда речь идет об абсолютных конфигурациях хиральных реакционных центров (которые определяются правилами последовательного старшинства в рамках R,S-номенклатуры), привлекать понятия "обращение" или "сохранение" конфигурации нет смысла, т.к. та или иная конфигурация определяется только старшинством заместителей, и изменение старшинства в результате замещения одной из групп не обязано совпадать с реальной пространственной ориентацией его вступления в молекулу, например:

К третьей группе относятся биохимические методы. В ряду одного класса соединений, например, аминокислот, определенный фермент атакует молекулы только одной конфигурации. Если какой-то фермент, скажем, атакует только (S)-аминокислоты, не трогая (R)-форму, и это экспериментально установлено на ряде примеров, то еще одна аминокислота, подвергающаяся действию того же фермента, должна принадлежать к (S)-ряду.




Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается  копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору