УДК 541.183

## МЕТОД ХАРАКТЕРИСТИЧЕСКИХ КРИВЫХ. АПРИОРНЫЙ РАСЧЕТ РАВНОВЕСИЙ АДСОРБЦИИ БИНАРНЫХ СМЕСЕЙ ВЕЩЕСТВ НА АКТИВНЫХ УГЛЯХ И ЦЕОЛИТАХ

А.М. Толмачев, Е.А. Пронина, М.В. Бородулина, Е.Н. Егоров, Н.Г. Крюченкова

(кафедра физической химии)

На основании анализа большого массива экспериментальных данных об адсорбции смесей паров и бинарных растворов неэлектролитов на микропористых активных углях и цеолитах уточнены уравнения для априорных расчетов соответствующих равновесий в рамках предложенного ранее метода характеристических кривых. Предложен критерий выбора вида уравнений, описывающих "свойство подобия", т.е. связь характеристических кривых адсорбции компонентов базовой и рассчитываемой смесей. При этом все параметры используемых уравнений находятся только по данным об адсорбции индивидуальных компонентов смеси.

В работах [1–3] был предложен и экспериментально обоснован метод априорного расчета равновесий адсорбции бинарных смесей флюидов на микропористых адсорбентах, основанный на предложенном авторами полуэмпирическом уравнении связи между характеристическими кривыми адсорбции компонентов (ХККС), которые расчитывают вдоль сечений с постоянной суммарной степенью заполнения объема микропор суммой компонентов,  $\theta_{ij}$ , т.е. зависимости вида

$$RT \ln z_i \gamma_i = f(N_i)$$

для рассчитываемой (X, Y) и базовой (A, B) систем. При наличии изотерм индивидуальной адсорбции компонентов смесей ошибка расчетов, как правило, не превышала 3-8%, однако для некоторых систем было отмечено увеличение ошибки расчетов, особенно в области малых значений объемной доли соответствующего компонента  $(N_i)$  в адсорбционных растворах.

В связи с вышеизложенным в настоящей работе на основе дополнительного анализа большого числа новых систем показано, что наряду с предложенными ранее полуэмпирическими соотношениями (1) и (2), которые связывают производные ХККС для рассчитываемых (X, Y) и базовой (A, B) систем, необходимо использовать соотношения другого вида (3) и (4), причем выбор каждого из них может быть сделан только на основании данных об адсорбции соответствующих индивидуальных компонентов

$$\begin{bmatrix} T_{XY} \left( \frac{\partial lnz_{X}\gamma_{X}}{\partial N_{X}} \right)_{\theta_{XY},T_{XY}} = T_{AB} \overline{L}_{X} \left( \frac{\partial lnz_{A}\gamma_{A}}{\partial N_{A}} \right)_{\theta_{AB},T_{AB}} \end{bmatrix}_{N_{X}=N_{A}}, \quad (1) \\ \begin{bmatrix} T_{XY} \left( \frac{\partial lnz_{Y}\gamma_{Y}}{\partial N_{X}} \right)_{\theta_{XY},T_{XY}} = T_{AB} \overline{L}_{Y} \left( \frac{\partial lnz_{B}\gamma_{B}}{\partial N_{A}} \right)_{\theta_{AB},T_{AB}} \end{bmatrix}_{N_{X}=N_{A}}, \quad (2) \\ \begin{bmatrix} T_{XY} \left( \frac{\partial lnz_{X}\gamma_{X}}{\partial N_{X}} \right)_{\theta_{XY},T_{XY}} = T_{AB} \{ \overline{L}_{X} \left( \frac{\partial lnz_{A}\gamma_{A}}{\partial N_{A}} \right)_{\theta_{AB},T_{AB}} \}^{\frac{1}{\overline{L}_{X}}} \end{bmatrix}_{N_{X}=N_{A}}, \quad (3) \\ \begin{bmatrix} T_{XY} \left( \frac{\partial lnz_{Y}\gamma_{Y}}{\partial N_{X}} \right)_{\theta_{XY},T_{XY}} = T_{AB} \{ \overline{L}_{Y} \left( \frac{\partial lnz_{B}\gamma_{B}}{\partial N_{A}} \right)_{\theta_{AB},T_{AB}} \}^{\frac{1}{\overline{L}_{Y}}} \end{bmatrix}_{N_{X}=N_{A}}, \quad (4) \\ \end{bmatrix}$$

где коэффициенты подобия рассчитывают по данным для адсорбции паров только соответствующих компонентов смесей:

$$\overline{L}_{X} = \frac{l_{Y}l_{A}E_{01}\beta_{XY}[N_{A} + \beta_{AB}(1 - N_{A})]}{l_{X}l_{B}E_{02}\beta_{AB}[N_{A} + \beta_{XY}(1 - N_{A})]},$$
(5)

$$\bar{L}_{Y} = \frac{l_{X} l_{B} E_{01} [N_{A} + \beta_{AB} (1 - N_{A})]}{l_{Y} l_{A} E_{02} [N_{A} + \beta_{XY} (1 - N_{A})]}$$
(6)

В уравнениях (1)–(6)  $T_{ij}$  – температура для рссчитываемых и базовых систем;  $z_i \gamma_i = p_i \gamma_i / (p_i \gamma_i)_{c_{\mathrm{T}}}$  (пары) =  $x_i \gamma_i$  (растворы),  $p_i$ ,  $x_i$  – равновесные давления и мольные доли,  ${\bf p}_{\rm i.c.}$  – давление насыщенного пара соответствующего чистого компонента,  $\gamma_i$  – коэффициент активности компонентов объемной фазы;  $N_i = \beta_{ij} c_i / \beta_{ij} c_i + c_j -$ объемная доля компонентов адсорбционного раствора (с, - молярная концентрация в рамках метода полного содержания);  $oldsymbol{eta_{ii}} = a_{0i}/a_{0i} -$  стехиометрические коэффициенты взаимного вытеснения компонентов адсорбционного раствора [4],  $a_{0i}$  – предельная величина адсорбции по ТОЗМ [5];  $\theta_{ii}$  – суммарная степень заполнения объема микропор; 1, - коэффициент подобия характеристических кривых адсорбции соответствующих паров по стандартному пару (бензол),  $E_{01}$ ,  $E_{02}$  – характеристическая энергия адсорбции стандартного пара на адсорбентах для базовой и рассчитываемых систем по ТОЗ М [5].

В связи с компьютеризацией расчетов в настоящей работе соотношения (5) и (6) использованы в виде, первоначально предложенном в [1, 2]. В работах [3, 6, 7] это соотношение использовали в более простой (линейной) форме. Важно подчеркнуть, что в соответствии с [1–3] для расчета по соотношениям (1)–(6) необходимо выбирать рассчитываемые и базовую системы так, чтобы соответствующие компоненты были близки по типам межмолекулярных взаимодействий, например, если X, Y-смесь бензола и изооктана (гептана,  $CCl_4$ ,  $SiH_4$ , циклопентана и т.п.), то в качестве базовой может быть использована смесь толуола (ксилола и т.п.) и циклогексана (гексана и т.п.). При этом значения  $\overline{I}_4$  не зависят от  $T, \theta_{ij}$  и, что очень важно, позволяют сравнивать соответствующие

системы на разных микропористых адсорбентах, характеризуемых значениями  $E_{\rm 0i}$ .

При интегрировании уравнений (1–4) значения  $Tlnz_i\gamma_i$  при  $N_i=1,\ \theta_{ij}<1$  находят по изотермам адсорбции соответствующих паров, при адсорбции из растворов ( $\theta_{ij}=1$ ) эти термы равны нулю. Если изотермы адсорбции индивидуальных паров отсутствуют, то для проверки надежности априорных расчетов достаточно сравнить рассчитанную и экспериментальную ХККС, делая допущение, что  $Tlnz_i\gamma_i=0,\ N_i=1$  при любых значениях  $\theta_{ij}<1$ .

При изучении адсорбции из растворов изотермы избыточной адсорбции ( $\Gamma_i$ ) определяют экспериментально:

$$\Gamma_{i}^{x} = \frac{n_{0}(x_{0i} - x_{i})}{g}$$
, (7)

$$\Gamma_{i}^{v} = \frac{v_{0}(c_{0i} - c_{i})}{g},$$
(8)

где:  $\mathbf{n}_0$ ,  $\mathbf{x}_0$ ,  $\mathbf{x}_i$  — суммарное число ммолей, исходная и равновесная мольные доли компонента раствора,  $\mathbf{v}_0$ ,  $\mathbf{c}_{0i}$ ,  $\mathbf{c}_i$  — исходный объем (мл) раствора, исходная и равновесная молярные концентрации компонента раствора,  $\mathbf{g}$  — навеска адсорбента (г).

В этой связи для проведения априорных расчетов по соотношениям (1)–(6) изотермы избыточной адсорбции пересчитывали в изотермы полного содержания ( $c_i = f(x_i)$  и, далее,  $c_i = f(N_i)$ ) по соотношениям [8]:

$$\bar{c}_{i} = \frac{\Gamma_{i}^{x} + x_{i} a_{0j}}{1 - x_{i} (1 - \beta_{ij})},$$
(9)

$$\bar{c}_{i} = \frac{\Gamma_{i}^{v} - \frac{v_{0}x_{i}(c_{0} - c)}{g} + x_{i}a_{0j}}{1 - x_{i}(1 - \beta_{i:})},$$
(10)

где:  $c_0$ , c — суммарные молярные концентрации исходного и равновесного растворов.

Важно отметить, что ХККС второго компонента рассчитываются с меньшей точностью, и поэтому при адсорбции из растворов расчет лучше проводить по очевидным для каждой заданной температуры  $T_{\rm XY}$  и значений  $N_{\rm x}$  соотношениям:

$$lnz_{v}\gamma_{v} = ln(1-z_{x})\gamma_{v}, \qquad (11)$$

где  $z_x = \exp\{F(N_x) - \ln \gamma_y\}$ ,  $F(N_x) = \ln z_x \gamma_x(N_x)$ , а значения  $\ln z_x \gamma_x(N_x)$  рассчитывают по соотношениям (1) или (3).

Значения коэффициентов активности компонентов объемных растворов, необходимые для расчетов ХККС, рассчитывали из данных по равновесиям жидкость—пар или по методу *Unifac*.

В качестве примеров (подробные данные приведены в [9]) в табл. 1, 2 и на рис. 1, 2 приведены результаты расчетов для разных комбинаций рассчитываемых и базовых (приведены в скобках) систем:

I. Псевдокумол-октан-NaX, 338 К (параксилол-октан-NaX, 338 К) [10];

II. Гексан-изооктан-АУ-WS (298 К) (гексан-метилциклогексан-АУ- WS, 298 К) [11]; III. Толуол–гексан–БАУ–I, 438 К (этилбензол–гексан–БАУ–I, 438 К) [12];

IV. Толуол-октан-БАУ-I, 438 К (бензол-изооктан-АУ-6, 303 К) [12, 13];

V. Толуол-октан-БАУ-I, 438 К (этилбензол-гексан-БАУ-I, 438 К) [12];

VI. Этилбензол-октан-NaX, 338 К (параксилол-октан-NaX, 338 К) [10];

VII. Толуол– ${\rm CCl_4}$ –БАУ–II, 438 К (этилбензол–гексан–БАУ–I, 438К) [12];

VIII. Толуол-октан-БАУ-I, 438 К (толуол-гексан-БАУ-I, 438 К) [12];

IX. Кумол-октан-NaX, 338 К (псевдокумол-октан-NaX, 338 К) [10];

X. Ацетон–пропанол–АУ–3, 298 К (ацетон–бутанол–АУ–3, 298 К) [14];

XI. Бензол–изооктан–NaX, 338 K (бензол–циклогексан– NaX, 338 K) [15];

XII. Этилбензол-октан-NaX, 338 К (кумол-октан-NaX, 338 К) [10];

XIII. Пропиловый спирт– $CCl_4$ –AУ–3, 293 К (бутиловый спирт– $CCl_4$ –AУ–3, 293 К) [14];

XIV. Гексан-изооктан-АУ-ROTH, 298 К (гексан-метилциклогексан-АУ-ROTH, 298 К) [11];

XV. Этилбензол–гексан–БАУ–1, 438 К (бензол–изооктан–АУ–6, 303 К) [12, 13];

XVI. Гептен-октан-БАУ-2, 438 К (гексен-гептан-БАУ-2, 438 К) [12];

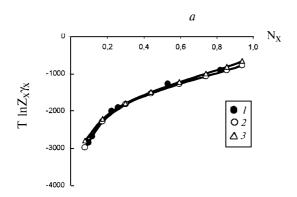
XVII. Этанол-гексан-АУ-3, 303К (этанол-ССІ<sub>4</sub>-АУ-3,303 К) [14];

XVIII. Изобутанол–изооктан–АУ–3, 303 К (бутанол–гексан–АУ–3, 303 К) [14];

XIX. Толуол–гексан– БАУ–I, 438 К (бензол–изооктан– АУ–6, 303 К) [12, 13];

XX. Этанол-метилциклогексан-АУ-WS, 298K (Этанол-изооктан-АУ-WS, 298 K) [11].

Как видно из приведенных данных (аналогичные данные получены и для других систем), использование соотношений (1)-(6) позволяет осуществлять априорные расчеты равновесий адсорбции в большом числе систем на основе ограниченной экспериментальной информации, собранной в базовом банке данных. Метод достаточно универсален, так как результаты расчетов не зависят от физико-химических (энергетических и структурных) характеристик сравниваемых пар систем. При этом метод позволяет осуществлять действительно априорные расчеты, поскольку коэффициенты подобия (5) и (6) рассчитываются только по данным для адсорбции индивидуальных паров, а выбор соотношений (1), (2) или (3), (4) может быть сделан также априорно по этим же данным. Действительно, как видно из данных табл. 2, соотношения (3) и (4) целесообразно использовать только в том


Таблица 1 Экспериментальные характеристические кривые адсорбции компонентов бинарных смесей [RTlnz $_i$ g $_i$  = f (Ni)] и относительная ошибка их априорного расчета ( $\Delta$ ,%) для систем I, III–V, XII

| Ĭ              |                         |            |                   |            |            |                   | XII            |       |                   |                |            |                        |                   |   |            |
|----------------|-------------------------|------------|-------------------|------------|------------|-------------------|----------------|-------|-------------------|----------------|------------|------------------------|-------------------|---|------------|
| N <sub>x</sub> | $RTlnz_x\gamma_x$       | $\Delta\%$ | $RTlnz_y\gamma_y$ |            | $\Delta\%$ |                   | N <sub>x</sub> |       | $RTlnz_x\gamma_x$ |                | $\Delta\%$ | 6 RTlnz <sub>y</sub> γ |                   | y | $\Delta\%$ |
| 0,223          | 27728                   | 2,0        | 0                 |            | 29,2       |                   | 0,498          |       | 18131             |                | 6          |                        | 4                 |   | 17         |
| 0,438          | 24192                   | 3,6        |                   | 1          |            | 40,8              |                | 0,648 |                   | 16861          |            |                        | 6                 |   | 27         |
| 0,733          | 17468                   | 0,0        | 8                 |            | 13,2       |                   | 0,723          |       | 15695             |                | 0          |                        | 10                |   | 1          |
| 0,836          | 14572                   | 1,6        | 22                |            |            | 4,4               | 0,771          |       | 14679             |                | 1          |                        | 14                |   | 3          |
| 0,893          | 12800                   | 0,7        | 4                 | <b>4</b> 1 |            | 0,9               | 0,887          |       | 11693             |                | 2          |                        | 41                |   | 4          |
| 0,927          | 11541                   | 0,0        | 63                |            |            | 6,1               | 0,905          |       | 11112             |                | 1          |                        | 51                |   | 4          |
| 0,948          | 10606                   | 0,1        | 88                |            |            | 12,8              | 0,921          |       | 10474             |                | 1          |                        | 64                |   | 4          |
| 0,965          | 9730                    | 0,7        | 122               |            |            | 21,8              | 0,954          | ļ.    | 90                | )56            | 2          |                        | 106               |   | 3          |
| 0,977          | 8946                    | 3,0        | 164               |            |            | 0,8               | 0,966          |       | 85                | 516            | 5          |                        | 130               |   | 3          |
| 0,985          | 8283                    | 5,9        | 210               |            |            | 13,4              | 0,977          | ,     | 79                | 935            | 8          | 193                    |                   |   | 5          |
| 0,997          | 6985                    | 16,1       | 337               |            |            | 1,4               | 1,4 0,995      |       | 63                | 348 7          |            |                        | 404               |   | 1          |
| III            |                         |            |                   |            | IV         |                   |                |       |                   | V              |            |                        |                   |   |            |
| N <sub>x</sub> | $N_x$ $RTlnz_x\gamma_x$ |            | Δ% N <sub>x</sub> |            | Ç.         | $RTlnz_x\gamma_x$ |                |       | Δ%                | N <sub>x</sub> |            | I                      | $RTlnz_x\gamma_x$ |   | Δ%         |
| 0,03           | 3 41057                 |            | 9,6 0,02          |            | 25         | 28736             |                |       | 6,6               | 0,025          |            |                        | 28736             |   | 6,1        |
| 0,13           | 3 33377                 |            | 1,4               | 4 0,06     |            | 243               | 61             |       | 4,2 0,0           |                | 53         |                        | 24361             |   | 6,2        |
| 0,22           | 29883                   |            | 0,7               | 0,070      |            | 236               | 99             |       | 4                 | 0,071          |            |                        | 23699             |   | 6,4        |
| 0,38           | 26680                   |            | 1,2               | 0,073      |            | 23517             |                |       | 4                 | 0,073          |            |                        | 23517             |   | 6,4        |
| 0,5            | 24823                   |            | 1,5               | 0,225      |            | 166               | 56             |       | 4                 | 0,225          |            |                        | 16656             |   | 5          |
| 0,69           | 69 22385                |            | 0,1               | 0,26       |            | 15829             |                |       | 3,7               | 0,260          |            |                        | 15829             |   | 4,1        |
| 0,79           | 79 21111                |            | 3 0,53            |            | 3          | 116               | 25             |       | 4,3               | 0,530          |            |                        | 11625             |   | 6,6        |
| 0,92           | 19327                   |            | 2,7 0,85          |            | 2          | 972               | 25             |       | 13,2              | 0,820          |            |                        | 9725              |   | 32,8       |

 $\label{eq:Tadinu} T\ a\ b\ \pi\ u\ q\ a\ 2$  Значения M и используемые (отмечены +) условия подобия (1), (2) или (3), (4) для различных систем

| Система | M    | (1), (2) | (3), (4) | Система | M    | (1), (2) | (3), (4) |
|---------|------|----------|----------|---------|------|----------|----------|
| I       | 0,37 |          | +        | XI      | 0,3  |          | +        |
| П       | 0,14 | +        |          | XII     | 0,12 | +        |          |
| III     | 0,15 | +        |          | XIII    | 0,17 | +        |          |
| IV      | 0,05 | +        |          | XIV     | 0,14 | +        |          |
| V       | 0,32 |          | +        | XV      | 0,38 |          | +        |
| VI*     | 0,03 | +        | +        | XVI     | 0,07 | +        |          |
| VII     | 0,03 | +        |          | XVII*   | 0,08 | +        | +        |
| VIII*   | 0,17 | +        | +        | XVIII   | 0,26 | +        |          |
| IX      | 0,07 | +        |          | XIX     | 0,33 |          | +        |
| X       | 0,24 | +        |          | XX*     | 0,05 | +        | +        |

<sup>\*</sup> Значения  $L_{\!f}$  близки к единице.



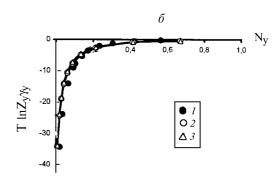
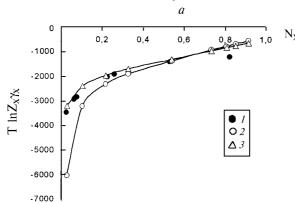




Рис. 1. Характеристические кривые компонента X системы VIII (a) и компонента Y системы IX ( $\delta$ ): 1 – экспериментальные, 2 – рассчитанные по соотношениям (1), (2), 3 – рассчитанные по соотношениям (3), (4)



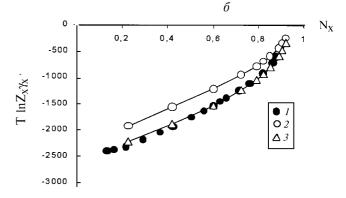



Рис. 2. Характеристические кривые компонента X систем V (a) и XI ( $\delta$ ): I – экспериментальные; 2 – рассчитанные по соотношениям (1), (2); 3 – рассчитанные по соотношениям (3), (4)

случае, когда разница в относительной адсорбируемости компонентов рассчитываемой и базовой смесей

$$M = \left| \frac{l_X}{l_Y} - \frac{l_A}{l_B} \right| \tag{12}$$

составляет > 0,3. В остальных случаях лучшие результаты позволяет получить расчет по соотношениям (1) и (2), а при значениях  $\overline{\mathbf{I}}_{\!\scriptscriptstyle f}$ , близких к единице, оба типа соотношений дают сходные результаты. Приведенный критерий (12) и выражения для  $\overline{\mathbf{I}}_{\!\scriptscriptstyle f}$  найдены нами эмпирически, и для

их теоретического обоснования необходимы дальнейшие исследования. Можно лишь отметить, что комбинации  $\mathbf{l}_i$ ,  $\mathbf{E}_{0i}$  в соотношениях (5), (6) и (12) отражают различия в энтальпиях адсорбции базовой и рассчитываемой систем, а зависимость  $\overline{\mathbf{l}}_i$  от состава адсорбционного раствора отражает различия в изменениях энтропий адсорбции сравниваемых смесей, причем это различие тем больше, чем сильнее различаются стехиометрические коэффициенты, т.е. соотношения мольных объемов компонентов X, Y и A, В для этих смесей.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Толмачев А.М., Трубников И.Б. // ДАН СССР. 1982. **264.** С. 116.
- 2. Tolmachev A.M., Trubnikov I.B., Artushina G.G. // Carbon. 1984. 22. P. 459.
- 3. *Толмачев А.М.* //Вестн. Моск. ун-та. Сер. 2. Химия. 1994. **35.** С. 115.
- 4. Толмачев А.М. //Langmuir. 1991. № 7. Р. 1400.
- 5. Dubinin M.M. //Progr. Surf. Membr. Sci. 1975. 9. P. 1.
- 6. *Артюшина Г.Г.* // Дис. ... канд. хим. наук. М., 1988.
- 7. Крюченкова Н.Г. // Дис. ... канд. хим. наук. М., 1992.

- Толмачев А.М., Рахлевская М.Н., Рябухова Т.О. // ЖФХ. 1994. 68. С. 190.
- 9. Бородулина М.В. // Дис. ... канд. хим. наук. М., 2001.
- 10. Якубов Э.С. // Дис. ... канд. хим. наук. М., 2001.
- Seippel J., Ulbig P., Schulz S. // J. Chem. Eng. Data. 2000. 45.
   P. 780.
- 12. Трубников И.Б. // Дис. ... канд. хим. наук. М., 1982.
- 13. Ларионов О.Г. // Дис. ... канд. хим. наук. М., 1975.
- 14. Арзамасцева А.Б. // Дис. ... канд. хим. наук. Саратов, 2000.
- 15. Ларионов О.Г., Чмутов К.В., Шаюсупова М.И. // ЖФХ. 1979. **53.** C. 733.