УДК 542.61

РОЛЬ ТЕМПЕРАТУРЫ ПРИ ПОДАВЛЕНИИ ЭКСТРАКЦИИ ОДНИХ МЕТАЛЛОВ ДРУГИМИ. РАСЧЕТ КОЭФФИЦИЕНТОВ РАСПРЕДЕЛЕНИЯ ПРИ ЭКСТРАКЦИИ ПО ГИДРАТНО-СОЛЬВАТНОМУ И СОЛЬВАТНОМУ МЕХАНИЗМАМ

А. А. Абрамов, О. В. Елисеева, С. В. Волкова

(кафедра радиохимии)

Изучено взаимное влияние индия (III), теллура (IV) и олова (IV) при их совместной экстракции из растворов хлористо-водородной кислоты метилбутилкетоном. Теллур и индий экстрагируются в данных условиях в виде металлгалогенидных кислот по гидратно-сольватному механизму, в то время как для олова реализуется не только аналогичный механизм экстракции, но и сольватный с экстракцией нейтрального хлоридного комплекса. Рассчитаны коэффициенты экстракции олова (IV) в присутствии индия (III) и теллура (IV), которые достаточно хорошо совпадают с экспериментальными данными. Установлено, что повышение температуры нивелирует подавление экстракции одного металла другим.

Таблица 1

Константы диссоциации ($K_{\text{дис}}$) и «эффективные» константы экстракции ($K_{\text{экс}}$) $H_2\text{TeCl}_6$ и HInCl_4 метилбутилкетоном из

2 M HCI								
Температура, °С	5	25	40	60				
$K_{\scriptscriptstyle m SKC} \cdot 10^3 ({ m H}_2{ m TeCl}_6)$	12,2	12,2	10,8	7,5				
$K_{\text{дис}} \cdot 10^3 (\text{H}_2\text{TeCl}_6)$	4,56	0,95	0,54	0,15				
$K_{\rm 3KC} \cdot 10^3 (\mathrm{HInCl_4})$	5,1	4,7	4,3	4,2				
<i>К</i> _{дис.} · 10 ³ (HInCl ₄)	2,55	1,5	1,35	1,15				

Экстракция большого количества химических элементов из растворов галогенводородных кислот спиртами, кетонами и эфирами осуществляется в виде металлгалогенидных кислот по гидратно-сольватному механизму. Так как спирты и кетоны имеют достаточно высокие диэлектрические проницаемости, процесс экстракции сопровождается диссоциацией комплексных и галогенводородных кислот в органической фазе. Зависимость

коэффициентов распределения одного элемента от его концентрации или концентрации другой комплексной кислоты наиболее явно проявляется при экстракции кетонами. Спирты заметно лучше экстрагируют галогенводородные кислоты, и за счет эффекта общего иона (иона водорода) происходит подавление диссоциации комплексных металлгалогенидных кислот галогенводородной [1, 2]. Нами на основании экстракционных данных и данных по электропроводности экстрактов были вычислены эффективные константы экстракции $H_2\mathrm{TeCl}_6$ и HInCl_4 кетонами и их константы диссоциации в экстрактах (табл. 1) [3, 4].

При экстракции олова в тех же условиях было выяснено, что экстракция протекает по двум механизмам: по сольватному механизму в виде комплекса $SnCl_4\cdot(H_2O)_2\cdot nS$ и гидратно-сольватному (аналогично индию и теллуру) в виде $H_2(H_2O)_mS_nSnCl_6$, где S — экстрагент [5]. Коэффициенты распределения олова также зависят от концентрации олова и температуры (табл. 2). Однако концентрационная зависимость выражена в меньшей степени, чем у индия и теллура, а температурная в большей степени, как это свойственно экстракционным системам с сольватным механизмом экстрагирования.

Таблица 2 Коэффициенты распределения олова (IV) между 2 M раствором HCl и метилбутилкетоном

Температура, °С	$C_{\mathrm{Sn(IV)}}$, M						
	2,6 · 10 4	6 · 10 ⁴	10 ³	3·10 ³	6·10 ³	10 ²	3·10 ²
5	27	24	19,3	15,3	15,1	11,8	10,0
25	8	7,6	6,65	5,9	4,7	4,2	3,9
40	3,8	3,8	3,7	3,3	2,86	2,47	2,20
60	1,7	1,7	1,6	1,52	1,29	1,16	1,05

Удельная электропроводность олова (IV) в метилбутилкетоне (χ , ом⁻¹·см⁻¹)

Темпера-	C _{Sn (IV)} , M							
тура, °С 10 ³	10 ³	3·10 ³	6·10 ³	10 ²	3·10 ²			
5		3.10 4	3,9·10 4	5,2·10 4	9,4·10 4			
25	1,2·10 3	2,2·10 4	3.10 4	3,7·10 4	6,3·10 4			
40		2,0·10 4	2,4·10 4	3,2·10 4	5,6·10 4			
60		1,6·10 4	1,8·10 4	2,6·10 4	4,5·10 4			

Примечание. Для удобства расположения данных приведена начальная концентрация олова (IV) в водной фазе до экстракции его метилбутилкетоном. Используя данные табл. 2, можно рассчитать концентрацию олова в экстракте.

Таблица 4

Таблица 3

Коэффициенты распределения олова (IV) в присутствии теллура (IV) между 2M раствором HCl и метилбутилкетоном $(C_{\text{Sn (IV)}} = 2.6 \cdot 10^{-3} \text{ M})$

	$C_{ ext{Te (IV)}}$, М/л						
Температура, °С	10 ³		10 ²		10 1		
	$D_{ m pac}$ ч	$D_{$ эксп	$D_{ m pac ext{ u}}$	$D_{ m эксп}$	$D_{ m pacч}$	$D_{ m эксп}$	
5	10,5	9,4	7,6	8,3	3,8	3,8	
25	4,4	4,2	4,0	3,9	2,3	2,3	
40	3,0	2,8	2,1	2,1	1,2	1,0	
60	1,1	1,0	0,9	0,9	0,7	0,75	

Коэффициент распределения олова кетонами может быть представлен уравнением

$$D = K' \cdot \Pi \gamma + K[H^+]^2_{(B)} \Pi \gamma +$$

$$+ \; (K_{\text{дис}} \; \cdot \; K [\text{H}^+]^2_{\; (\text{B})} \; \Pi \gamma) / \; \Pi \gamma_i (K_{\text{дис}(i)} \cdot \; K_i \; \cdot \; [\text{Me}_i]_{(\text{B})} \cdot \; [\text{H}]^i_{\; (\text{B})})^{1/2}, \quad (1)$$

где K' – концентрационная константа экстракции олова в виде тетрахлорида;

К – концентрационная константа экстракции H₂SnCl₆;

Пу и Пу. – произведение коэффициентов активности различных частиц для соединений олова.

Попытка расчета $K_{\text{лис}}$ $H_2 \text{SnCl}_6$ в предположении, что экстрагируется только комплексная форма, не привела к успеху. Данный факт дополнительно свидетельствует в пользу предположения о том, что в случае олова (IV) наряду с комплексной кислотой экстрагируется и сольват хлорида олова (IV). Поэтому мы провели серию расчетов, варьируя долю комплексной кислоты при экстракции олова. Расчеты проводили также методом последовательных приближений по Фуоссу-Краусу [6] с использованием данных по электропроводности раствора олова (IV) в метилбутилкетоне (табл. 3). Только в интервале мольной доли Н₂SnCl₆ 5-25% по отношению ко всем комплексным формам олова в органической фазе мы получили положительные значения для константы диссоциации H₂SnCl₆ (при температурах 5, 25, 40 и 60° $K_{\text{пис}}$ имели значения $6\cdot10^{-4}$; $5,2\cdot10^{-4}$; $2,3\cdot10^{-4}$ и $0.8 \cdot 10^{-4}$ cootветственно).

На основании полученных значений констант диссоциации $H_{2}SnCl_{6}$, вычисленных значений K и K' были рассчитаны значения коэффициентов распределения олова в присутствии теллура и индия (табл. 4, 5). Методика расчетов эффективных констант экстракции в более простых экстракционных системах подробно описана в работе [7].

Удовлетворительное согласие экспериментальных и расчетных данных подтверждает наше предположение о том, что олово (IV) экстрагируется кетонами по двум механизмам. Как видно из табл. 4, 5, повышение температуры нивелирует подавление экстракции одного металла другим.

Таблица 5 Коэффициенты распределения олова (IV) в присутствии индия (III) между 2M раствором HCl и метилбутилкетоном $(C_{\text{Sn}}(\text{IV}) = 2.6 \cdot 10^{-3} \text{ M/J})$

	$C_{ m In~(III)},~{ m M}/{ m I}$						
Температура, °С	10 ³		10 ²		10 1		
	$D_{ m pac}$	$D_{ m эксп}$	$D_{ m pac ext{ iny q}}$	$D_{\scriptscriptstyle 9 m KCII}$	$D_{ m pac ext{ iny q}}$	$D_{\scriptscriptstyle \mathfrak{I}$	
5	15,0	13,4	10,0	9,2	4,5	4,5	
25	4,5	4,4	3,7	3,9	2,9	2,8	
40	2,9	2,7	1,9	2,0	1,1	1,3	
60	1,1	1,0	0,9	0,9	0,7	0,8	

СПИСОК ЛИТЕРАТУРЫ

- 1. Золотов Ю.А., Иофа Б.З., Чучалин Л.К. Экстракция галогенидных комплексов металлов. М., 1973.
- 2. Иофа Б.З., Абрамов А.А. // Вестн. Моск. ун-та. Сер. 2. Химия. 1994. **35**. C. 497.
- 3. Абрамов А.А., Иофа Б.З. // Вестн. Моск. ун-та. Сер. 2. Химия. 1970. **11**. C. 324.
- 4. Иофа Б.З., Абрамов А.А., Марков Б.Н. // Радиохимия. 1970. 12. C. 751.
- 5. Абрамов А.А., Иофа Б.З. // Вестн. Моск. ун-та. Сер. 2. Химия. 1971. **12**. C. 722.
- 6. Измайлов Н.А. Электрохимия растворов. М., 1976.
- 7. Абрамов А.А. Дис. ... канд. хим. наук. М., 1970.

Поступила в редакцию 10.11.99