### Лекция 6.

#### Содержание.

## Спектроскопия <sup>13</sup>С-ЯМР

| 6.1. Несколько важных предварительных замечаний                          | 1  |
|--------------------------------------------------------------------------|----|
| 6.2. Гетероядерный двойной резонанс $^{13}$ C- $\{^{1}$ H $\}$           | 2  |
| 6.3. Химические сдвиги ядер <sup>13</sup> С                              | 12 |
| 6.4. Константы спин-спинового взаимодействия $J_{CH}$ и $J_{CC}$         | 20 |
| $6.4.1.$ Экспериментальные методы измерения $J_{CH}$                     | 20 |
| 6.4.2. Факторы, определяющие значения $J_{CH}$                           | 27 |
| 6.5. Пример постановки сложной задачи в области <sup>13</sup> С-ЯМР и ее |    |
| блестящего экспериментального решения                                    | 31 |
| 6.6. Пример решения структурной задачи                                   | 33 |

Спектроскопия <sup>13</sup>С-ЯМР на природном содержании этого изотопа занимает второе по значимости место в решении структурных задач при исследовании органических соединений, несмотря на то, что <sup>13</sup>С – ядро с низким природным содержанием (1,07%) и меньшим, чем у протона, магнитным моментом. Оба эти фактора приводят к тому, что, при прочих равных условиях, интенсивности сигналов в спектрах <sup>13</sup>С-ЯМР на природном содержании <sup>13</sup>С почти в 6000 раз меньше, чем в протонных спектрах. Однако технические проблемы, связанные с регистрацией этих спектров, были полностью решены с введением импульсной методики за счет накопления. В настоящее время этот вид ЯМР стал рутинным инструментом в органической и биоорганической химии.

### 6.1 .Несколько важных предварительных замечаний.

Прежде всего, заметим, что вероятность нахождения двух ядер  $^{13}$ С в одной молекуле (для молекул малой и средней молекулярной массы) очень мала — всего 0,01%. Поэтому *любой спектр*  $^{13}$  *С-ЯМР* — это сумма спектров разных молекул-изотопомеров. Вследствие этого в обычных спектрах  $^{13}$  С-ЯМР не наблюдается констант спин-спинового взаимодействия  $^{13}$  С- $^{13}$  С.

Как мы узнаем несколько позже, прямые КССВ  ${}^{1}J_{13\text{C-1H}}$  достаточно велики по абсолютной величине (от 120 до 250  $\Gamma$ ц), а КССВ  ${}^{13}\text{C-}{}^{1}\text{H}$  через 2 и 3 связи сравнимы по величине с аналогичными протон-протонными константами. Поэтому в спектрах  ${}^{13}\text{C-ЯМР}$  должно наблюдаться большое число расщеплений за счет взаимодействия этого ядра как с ближайшими, так и с удаленными протонами. Это дополнительно уменьшает пиковую

интенсивность сигнала и очень сильно затрудняет регистрацию спектра. В связи с этим рутинные спектры  $^{13}$ С-ЯМР всегда записываются в условиях *полного гетероядерного двойного резонанса*  $^{13}$ С- $^{1}$ H $^{3}$ .

Важно также иметь в виду, что времена релаксации для ядер углерода-13 значительно длиннее, чем времена релаксации протонов. В связи с этим при накоплении спектров  $^{13}$ С необходимо использовать значительно более длинные задержки между импульсами, чем при регистрации спектров  $^{1}$ Н-ЯМР. Основной механизм релаксации для ядер  $^{13}$ С – диполь-дипольная релаксация за счет взаимодействия с соседними протонами. Поэтому  $T_{1}$  и  $T_{2}$  значительно короче для углеродов в группах  $^{13}$ С С $^{13}$  и  $^{14}$ С углеродов, не имеющих связанных с ними протонов. Для таких «четвертичных» углеродов  $^{14}$  могут достигать сотен секунд! Мы уже знаем, что для того, чтобы система ядерных спинов пришла к термическому равновесию, при выполнении накопления необходимо вводить релаксационную задержку между импульсами порядка  $^{14}$ С Ясно, что из практических соображений это правило нельзя выполнить для четвертичных углеродов. Это одна из двух причин, по которым в реальных спектрах интенсивности сигналов таких углеродов оказываются заниженными за счет эффекта насыщения.

## 6.2. Гетероядерный двойной резонанс <sup>13</sup>C-{<sup>1</sup>H}.

С гомоядерным двойным резонансом мы уже познакомились в предыдущей лекции, а пример гетероядерного двойного резонанса  $^{1}\text{H-}\{^{14}\text{N}\}$  был показан лекции 4. Особенность проведения экспериментов по гетероядерному двойному резонансу  $^{13}\text{C-}\{^{1}\text{H}\}$  состоит в том, что амплитуда радиочастотного поля для облучения протонов должна быть настолько большой, чтобы полностью перекрывался весь диапазон химических сдвигов  $^{1}\text{H}$ . Такое облучение называют *широкополосным*. В современных спектрометрах эта задача решается с помощью специальных методов модуляции второго радиочастотного поля. Схема стандартного эксперимента по  $^{13}\text{C-}\{^{1}\text{H}\}$ -ЯМР с *широкополосной развязкой* от протонов приведена на рис. 6.1. После релаксационной задержки (еще раз напомню, что для полной релаксации необходимо время  $6T_I$ ) следует радиочастотный импульс на частоте  $^{13}\text{C}$ . Угол поворота намагниченности  $\theta$ , как мы знаем, обычно выбирается равным  $90^{\circ}$ . Облучение протонов осуществляется непрерывно.



Рис. 6.1. Схема стандартного эксперимента  $^{13}$ C- $\{^1$ H $\}$ -ЯМР с «*широкополосной развязкой*» от протонов.

Простой пример спектров  $^{13}$ С- ЯМР и  $^{13}$ С- $^{1}$ Н}- ЯМР представлен на рис. 6.2. Это спектры норборнана. В этом каркасном углеводороде 3 типа различных атомов углерода. На верхнем спектре «без развязки от протонов» мы видим два триплета и дублет за счет спин-спинового взаимодействия этих углеродов с непосредственно связанными с ними протонами. Дальние КССВ  $^{13}$ С- $^{1}$ Н тоже проявляются как дополнительные расщепления (для С-7 и С-1,4) или как уширение (для С-2,3,5,6) линий. Заметим, что в верхнем спектре наблюдается перекрывание сигналов. Правая компонента триплета С(7) совпадает с левой компонентой сигнала С(1,6). А в условиях «широкополосной развязки от протонов» на нижнем спектре мы видим всего 3 синглета.



Рис. 6.2. Спектры  $^{13}$ С-ЯМР и  $^{13}$ С- $\{^{1}$ Н $\}$ -ЯМР норборнана.

А вот более сложный пример – спектры дифенилселенида (рис. 6.3). В спектре  $^{13}$ С- $^{1}$ Н $^{1}$ -ЯМР мы видим, как и следовало ожидать, четыре сигнала, отнесение которых приведено на рисунке. В самом сильном поле находится сигнал С(4), который в спектре монорезонанса представляет собой дублет триплетов.



Рис. 6.3. Спектры  $^{13}$ С-ЯМР (внизу) и  $^{13}$ С- $^{1}$ Н $^{13}$ -ЯМР (вверху) дифенилселенида на частоте 25 МГ $^{11}$ .

Большое дублетное расщепление обусловлено спин-спиновым взаимодействием с протоном, непосредственно связанным с этим углеродом ( ${}^{1}J_{CH}\approx 125~\Gamma \mu$ ), а триплетное расщепление – спин-спиновым взаимодействием с двумя эквивалентными протонами при C(3) и C(5) ( ${}^{2}J_{CH}\approx 12,5~\Gamma \mu$ ). Спектр без развязки от протонов представляет собой X-часть спектра AA'BB'CX, поскольку протонный спектр дифенилселенида относится к типу AA'BB'C. Сигнал с химическим сдвигом 129,8 м.д. принадлежит *unco*-углероду C(1). Это тоже X-часть спектра AA'BB'CX. Но C(1) не имеет связанных с ним непосредственно протонов, поэтому интенсивность его сигнала понижена, поскольку при выбранной величине релаксационной задержки 4 сек проявляется эффект насыщения. В спектре монорезонанса этот сложный мультиплет, компоненты которого еле видны над уровнем шумов, обусловлен спин-спиновыми взаимодействиями C(1) с удаленными протонами через 2, 3 и 4 связи. Два других сигнала при 128,3 м.д. (C(3,5)) и 130,8 м.д. (C(2,6)) имеют «в неразвязанном спектре» сложную структуру. Это дублеты мультиплетов не первого порядка. Это и не удивительно, поскольку они представляют собой X-части ABCDEX-спектров.

В спектре двойного резонанса пиковые интенсивности сигналов резко возросли за счет исчезновения мультиплетности. Дополнительный почти двукратный выигрыш был получен за счет *ядерного эффекта Оверхаузера*, который мы подробно рассматривали в разделе 5.1.3 лекции 5. Основным механизмом спин-решеточной релаксации ядер

углерода-13, как я уже говорил, является диполь-дипольное взаимодействие с протонами. При быстром молекулярном движении (условие предельного сужения) и чисто дипольдипольном механизме релаксации отношение интенсивности сигнала ядра  $^{13}$ С, при облучении протона непосредственно связанного с ним ( $I^*$ ), к интенсивности того же сигнала в отсутствие облучения ( $I_0$ ), задается выражением (6.1):

$$I*/I_0 = 1 + 0.5 \gamma_H/\gamma_C = 1 + 1.99 = 2.99$$
 (6.1)

Вот перед вами эксперимент, который подтверждает такое значение ЯЭО. На рис. 6.4 показаны спектры  $^{13}$ С-ЯМР и  $^{13}$ С- $\{^{1}$ Н $\}$ -ЯМР муравьиной кислоты, меченной изотопом  $^{13}$ С. На нижнем спектре  $^{13}$ С-ЯМР суммарная интегральная интенсивность двух линий дублета принята за 1. Интенсивность синглета в спектре  $^{13}$ С- $\{^{1}$ Н $\}$ -ЯМР, как мы видим по интегральной кривой, действительно составила 2,98.

Однако максимальное значение ЯЭО достигается только в том случае, если нет вкладов других механизмов релаксации. Например, в спектрах квадрупольных ядер, таких как <sup>11</sup>B, <sup>14</sup>C, <sup>2</sup>H, практически отсутствует ЯЭО, поскольку для них релаксация осуществляется по квадрупольному механизму. Практически не наблюдается ЯЭО и в спектрах ЯМР таких ядер, которые имеют большую анизотропию химического сдвига (см. раздел 2.2 в лекции 2). К их числу относятся <sup>199</sup>Hg, <sup>77</sup>Se, <sup>195</sup>Pt и другие. Для них основной является релаксация, обусловленная анизотропией химического сдвига.



Рис. 6.4. Спектры  $^{13}$ С-ЯМР (внизу) и  $^{13}$ С- $\{^{1}$ Н $\}$ -ЯМР муравьиной кислоты, меченой изотопом  $^{13}$ С (Н $^{13}$ СООН), с интегральными кривыми.

Детальный анализ спектра дифенилселенида на рис. 6.3, к которому мы теперь еще раз вернемся, позволяет отметить одну важную особенность. Селен имеет изотоп  $^{77}$ Se со спином 1/2 и природным содержанием 7,6%. Поэтому в спектре с развязкой от протонов удается увидеть спутники, обусловленные спин-спиновым взаимодействием  $^{13}$ C- $^{77}$ Se, которые расположены симметрично относительно основных сигналов на расстояниях, равных половине соответствующей гетероядерной КССВ. Для C(1)  $^{1}J_{CSe} = 102,8$  Гц. Для сигнала C(2,6) спутники отчетливо видны  $^{2}J_{CSe} = 11,5$  Гц, для сигнала C(3,5)  $^{3}J_{CSe} = 2,7$  Гц, и спутники просматриваются лишь как две ступеньки справа и слева на пьедестале основного сигнала. Для C(4) спутников не удается увидеть, поскольку  $^{4}J_{CSe} < 2$  Гц.

Итак, двойной резонанс  $^{13}$ C- $^{1}$ H $^{3}$  был избран нами как средство для повышения соотношения сигнал/шум в спектрах этого ядра на его природном содержании. Эта цель была достигнута, но за это пришлось заплатить дорогую цену: в спектрах гетероядерного двойного резонанса  $^{13}$ C- $^{1}$ H $^{3}$  при широкополосной развязке теряется вся информация о КССВ  $^{13}$ C- $^{1}$ H, а интенсивности резонансных сигналов более нельзя сравнивать и использовать для определения числа ядер углерода данного типа. Они искажены вследствие того, что значения ЯЭО и времена релаксации разных ядер сильно различаются.

Потерянная информация исключительно ценна, а поэтому сразу начались поиски методик, которые позволили бы вернуть ее, хотя бы частично. Для отнесения сигналов в спектрах  $^{13}$ С-ЯМР очень важно знать, сколько атомов водорода непосредственно связано с каждым из углеродов. Получить эту информацию можно довольно просто. Сначала записывают спектр с полной развязкой, а затем частоту облучения протонов слегка смещают от положения резонанса. На рис. 6.5 показано, как влияет величина «расстройки» от положения резонанса радиочастотного поля при облучении протонов на форму сигнала  $CH_3$ -группы в спектре  $^{13}C$ - $^{1}H^{3}$ -ЯМР метилйодида.



Рис. 6.5. Спектры  $^{13}$ С- $\{^1$ Н $\}$ -ЯМР метилйодида при различных значениях расстройки  $\Delta v$  (в  $\Gamma$ ц) радиочастотного поля  $\{^1$ Н $\}$  от резонанса.

При таком «внерезонансном» облучении (*«off resonance decoupling»*) происходит лишь частичный коллапс мультиплетов. Исчезают расщепления, обусловленные малыми по модулю дальними КССВ  $^{13}$ С- $^{1}$ Н, а мультиплетность, обусловленная большими прямыми КССВ  $^{1}$  $J_{CH}$  при этом сохраняется, и вместе с ней сохраняется также эффект Оверхаузера. Сигналы метильных групп при этом выглядят как квадруплеты, сигналы групп  $CH_2$  – как триплеты, а сигналы групп CH – как дублеты. Синглетными остаются только сигналы «четвертичных углеродов», которые не несут связанных с ними непосредственно протонов. В качестве примера на рис. 6.6 показан спектр  $^{13}$ C- $^{1}$ H $^{1}$ -ЯМР камфоры (а), а также ее спектр с внерезонансным облучением (б) и спектр INEPT (в), о котором я расскажу немного позже.

На рис. 6.6а приведена только высокопольная часть спектра. В ней присутствуют сигналы всех атомов углерода, кроме углерода карбонила, который лежит в очень слабом поле при 219,3 м.д. В спектре с внерезонансным облучением (б) отчетливо различаем квадруплетную структуру сигналов углеродов метильных групп, триплеты двух из трех метиленовых углеродов, но наблюдается перекрывание дублета C(5) и триплета C(4). Синглетными остаются только сигнал четвертичного C(3) и сигнал карбонильного углерода C(1), который на спектре не показан.

В спектре, записанном с использованием импульсной последовательности INEPT («insensitive nuclei enhanced polarization transfer») разобраться гораздо легче. Все сигналы в нем синглеты, но для групп СН<sub>3</sub> и СН амплитуды их положительны, а для групп СН<sub>2</sub> – отрицательны. Метод с внерезонансным облучением сейчас используется только в рутинных экспериментах и относительно редко, поскольку при изучении сложных молекул перекрывание мультиплетов бывает столь сильным, что интерпретация почти **INEPT** невозможна. Помимо методики широко применяется импульсная последовательность **DEPT** («distortionless enhancement by polarization transfer») С ее помощью в двух экспериментах удается разделить сигналы всех типов углеродов в молекуле. В этих экспериментах интегральные интенсивности сигналов существенно увеличиваются за счет селективного переноса поляризации, который мы уже разбирали в разделе 5.1.4 предыдущей лекции, посвященном двойному резонансу. Вследствие этого удается существенно сократить время накопления таких спектров. Мы детально познакомимся с многоимпульсными последовательностями, которые применяются в этих методах «редактирования спектров» во второй части этого курса.



Рис. 6.6. Спектры  $^{13}$ С-ЯМР камфоры: а) спектр  $^{13}$ С- $\{^{1}$ H $\}$ -ЯМР; б) спектр  $^{13}$ С- $\{^{1}$ H $\}$ -ЯМР с внерезонансным облучением протонов; в) спектр INEPT.

Здесь же я привожу как пример использования последовательности DEPT спектры  $^{13}\text{C-}\{^1\text{H}\}$ -ЯМР 2,7-диметилоктин-3-ола-5 на рис. 6.7. Полный спектр  $^{13}\text{C-}\{^1\text{H}\}$ -ЯМР этого соединения представлен внизу. Сразу отметим присутствие в нем двух малоинтенсивных (опять насыщение!) сигналов четвертичных углеродов C(3) и C(4). Использование варианта последовательности DEPT-135 позволяет сразу выявить сигналы всех углеродных атомов, несущих протоны. При этом, как и в спектре INEPT, сигналы групп CH<sub>3</sub> и CH имеют положительную амплитуду, а сигналы групп CH<sub>2</sub> — отрицательную (средний спектр). Но в дополнение к этому последовательность DEPT-90 позволяет выделить только сигналы групп CH (верхний спектр).



Рис. 6.7. Спектры 2,7-диметилоктин-3-ола-5: внизу —полный спектр  $^{13}$ C- $^{1}$ H}-ЯМР; в середине - спектр DEPT-135; верхний спектр - DEPT-90.

При решении сложных структурных задач нередко возникает необходимость иметь точные значения констант спин-спинового взаимодействия  $J_{CH}$ . Их можно определить, записав спектр  $^{13}$ С-ЯМР без развязки от протонов, что требует очень большого времени для накопления. Временные затраты можно было бы сократить в 4 раза, если использовать такую методику двойного резонанса, в которой сохраняется неискаженной спиновая мультиплетность, но присутствует также и ЯЭО. И такая методика существует. В ней используется следующее важное свойство системы ядерных спинов. При ее возбуждении вторым радиочастотным полем, как мы уже знаем, возникает спиновая когерентность —

происходит перераспределение населенностей всех уровней, которые имеют общие переходы с облучаемыми переходами. Эти новые населенности после выключения возбуждающего поля сохраняются в течение времени релаксации  $T_1$ . Вместе с тем спиновая мультиплетность сигналов, обусловленная взаимодействием облучаемого ядра с другими ядрами, которая исчезла при включении второго поля, восстанавливается сразу же после его выключения. Это свойство и положено в основу эксперимента, который получил название «gated decoupling», что можно перевести как «прерываемая развязка». Его схема представлена на рис. 6.8. Здесь «развязка» от протонов включается только в период релаксационной задержки, но выключается на период выборки ССИ.



Рис. 6.8. Схема эксперимента  $^{13}$ C- $\{^{1}$ H $\}$ -ЯМР с «прерываемой широкополосной развязкой» от протонов.

В качестве примера эффективности этого метода на рис. 6.9 показан спектр  $^{13}$ С- $^{1}$ Н}-ЯМР этилбензола, который разбит на три фрагмента. В сильном поле (фрагмент (a)) мы видим квадруплет метильного углерода и триплет группы  $CH_2$  с дополнительными расщеплениями за счет  $^2$  $J_{CH}$ . Область спектра, включающая все сигналы бензольного кольца, в том числе сигнал unco- $C_1$  показана на среднем фрагменте ( $\sigma$ ), а внизу в более детальном масштабе даны сигналы всех других групп CH (фрагмент ( $\sigma$ )).

А вот для количественного анализа с помощью <sup>13</sup>C-{<sup>1</sup>H}-ЯМР необходимо использовать метод, который бы позволял подавить спиновую мультиплетность, но при этом избавиться от ЯЭО. Тогда можно получить правильные интенсивности сигналов в спектре, точно отвечающие соотношению соответствующих ядер в молекуле, но сохранить выигрыш в пиковой интенсивности за счет подавления мультиплетности. Этого можно достичь, используя методику двойного резонанса с «инвертированной прерываемой широкополосной развязкой» (рис. 6.10). В нем, в отличие от предыдущего случая, развязку от протонов включают только на период выборки ССИ. Спиновая мультиплетность при этом мгновенно убирается, а ЯЭО не успевает проявиться.



Рис. 6.9. Спектры  $^{13}$ C- $\{^{1}$ H $\}$ -ЯМР этилбензола, записанные с «*прерываемой широкополосной развязкой*» от протонов (объяснения в тексте).

Однако при осуществлении таких экспериментов не забывайте еще об одном препятствии – о слишком длинных временах релаксации углерода и, прежде всего, о временах релаксации четвертичных углеродов, которые могут достигать нескольких десятков секунд. Чтобы получить правильные интенсивности в этом случае нужно делать при накоплении задержки между импульсами в несколько минут (требование  $6T_I$ )!



Рис. 6.10. Схема эксперимента  $^{13}$ C- $\{^{1}$ H $\}$ -ЯМР с «*инвертированной прерываемой широкополосной развязкой*» от протонов.

Сократить это время можно, если добавить в раствор небольшое количество (5 - 10 мг на 1 мл раствора) «релаксанта». Чаще всего для этой цели используют парамагнитный ацетилацетонат хрома Cr(acac)<sub>3</sub>. Он инертен и хорошо растворим в полярных органических растворителях. Он снижает вклад диполь-дипольного механизма в релаксацию и углеродов, несущих протоны, что подавляет ЯЭО. Конечно, как Вы уже знаете, это приведет к уширению резонансных линий, но при больших диапазонах химических сдвигов углерода этот не наносит большого вреда.

Итак, можно сделать вывод о том, что регистрация спектров <sup>13</sup>С-ЯМР – значительно более сложная и длительная процедура, но затраты здесь с лихвой окупаются огромным объемом структурной информации, которая содержится в них.

### **6.3.** Химические сдвиги ядер <sup>13</sup>С.

На рис. 6.11 приведена диаграмма химических сдвигов ядер <sup>13</sup>С в основных классах органических соединений. Мы видим, что диапазон изменения химических сдвигов примерно в 30 раз больше, чем для протонов. (В действительности, полная шкала экранирования ядер <sup>13</sup>С превышает 650 м.д.). Это, безусловно, очень важный факт. Все структурные факторы в химических сдвигах углерода прослеживаются более отчетливо, чем в протонных сдвигах. Сравнивая эту диаграмму с диаграммой протонных химических сдвигов (рис. 3.4 в лекции 3), можем с удовлетворением отметить, что, несмотря на принципиально отличную природу экранирования (для <sup>13</sup>С, как и для других тяжелых ядер, доминирующим является парамагнитный вклад) наблюдается симбатность химических сдвигов <sup>13</sup>С и <sup>1</sup>Н в изоструктурных фрагментах.

Обратите внимание на то, что влияние электронной плотности прослеживается отчетливо: уменьшение электронной плотности ведет к сдвигу в слабое поле. В этом отношении особенно показательны данные по экранированию <sup>13</sup>С в карбениевых ионах (табл. 6.1).



Рис. 6.11. Диаграмма химических сдвигов ядер <sup>13</sup>C в основных классах органических соединений.

Эти данные получены Нобелевским лауреатом Джорджем Ола (Нобелевская премия по химии 1994 г «За вклад в химию карбокатионов»). Он разработал методики генерирования этих высоко реакционноспособных частиц в суперкислых средах и использовал ЯМР при низких температурах как основной метод их изучения.



Джордж Ола (род. 22 мая 1927 г.)

Я не буду здесь комментировать эти очень интересные результаты, предоставляя вам возможность обдумать их самостоятельно. Обратите при этом особое внимание на два кажущихся аномальными факта. Первый: при переходе от *тет.*-бутильного катиона к изопропильному сигнал карбениевого углерода смещается в сильное (!) поле, а сигнал углеродов метильных групп - в слабое. Второй: замена одной метильной группы в

кумильном карбокатионе  $C_6H_5C^+(CH_3)_2$  на фенил приводит к ожидаемому сильнопольному сдвигу, но при второй такой замене наблюдается слабопольный сдвиг.

|                                              | Химические сдвиги δ м.д.                 |                               |  |  |
|----------------------------------------------|------------------------------------------|-------------------------------|--|--|
| Структура                                    | Карбениевый <sup>13</sup> С <sup>+</sup> | <sup>13</sup> CH <sub>3</sub> |  |  |
| $(CH_3)_3C^+$                                | 328                                      | 47                            |  |  |
| $(CH_3)_2\mathbf{C}^+H$                      | 318                                      | 60                            |  |  |
| $(CH_3)_2$ $C^+C_2H_5$                       | 332                                      | 43                            |  |  |
| $(CH_3)_2$ $\mathbf{C}^+$ (цикло- $C_3H_5$ ) | 280                                      | 27                            |  |  |
| $C_6H_5C^+(CH_3)_2$                          | 254                                      |                               |  |  |
| $(C_6H_5)_2\mathbf{C}^+CH_3$                 | 198                                      |                               |  |  |
| $(C_6H_5)_3C^+$                              | 211                                      |                               |  |  |

Таблица 6.1. Химические сдвиги ядер<sup>13</sup>С в карбениевых ионах.

Если влияние электронной плотности на химические сдвиги <sup>13</sup>С выражено более отчетливо, чем на химические сдвиги протонов, то влияние магнитной анизотропии соседних атомов и групп, наоборот, проявляется не столь ясно. Поэтому резонансные сигналы олефиновых и ароматических углеродов здесь лежат в одной области. Полагаю, что и эту особенность Вы сможете легко объяснить, если проанализируете ее с позиций, использованных нами в разделе 3.1.1.1. лекции 3.

Обращаю Ваше внимание также на положение резонансного сигнала метилйодида в очень сильном поле. Это вновь проявление эффекта «тяжелого атома», который мы уже рассматривали.



Рис. 6.12. Эффекты тяжелых атомов (йода, брома и теллура) на экранирование углерода-13 в разных молекулах.

На рис. 6.12 показано еще несколько таких примеров. Мы видим, что этот эффект проявляется для углеродов всех типов гибридизации. Обратите внимание на

исключительно большой сильнопольный сдвиг <sup>13</sup>С в четырехйодистом углероде (-292,4 м.д.!).

Эффекты замещения проявляются в экранировании углерода более ярко, чем в экранировании протонов. Как и для протонных химических сдвигов, для сдвигов углерода хорошо выполняются соотношения аддитивности, и разработано несколько эмпирических схем для расчета сдвигов 13С по инкрементам заместителей в алканах, алкенах и в бензольном ряду. Но в этих эффектах связь сдвигов с электронными параметрами заместителей прослеживается не так ясно, как для протонных химических сдвигов. В самом деле, обратимся сначала к алифатическому ряду. В табл. 6.2 представлены наборы инкрементов для расчета химических сдвигов в открытых цепях (алканы и алкены). Легко видеть, что при насыщенном атоме углерода любой заместитель, кроме уже упомянутых тяжелых атомов, вызывает большой сдвиг а-углерода в слабое поле. В целом величина этого сдвига растет с увеличением электроотрицательности ключевого атома заместителя. Все без исключения заместители дают диамагнитный сдвиг у-углеродов. При этом в циклах он существенно зависит от стереохимии. Вот характерные примеры проявления уэффекта в трет.бутилциклогексанах (рис. 6.13). Геометрии этих молекул строго фиксированы – трет.бутильные группы, выполняющие роль конформационного якоря, всегда находятся в экваториальном положении. Легко видеть, что заместитель из трансположения к у-углероду вызывает значительно меньший диамагнитный сдвиг, чем из цисположения. Эта закономерность носит общий характер, и она часто используется при решении стереохимических задач.

Рис. 6.13. Примеры проявления  $\alpha$ - и  $\gamma$ -эффектов в экранировании углеродов в замещенных *трет* бутилциклогексанах.

Таблица 6.2. Инкременты заместителей ( $\delta$  м.д.) для расчета химических сдвигов  $^{13}$ С в алканах и алкенах по аддитивной схеме.

|                    | AJ   | тканы, полож | Алкены, положения |       |       |
|--------------------|------|--------------|-------------------|-------|-------|
| Заместитель        | α    | β            | γ                 | α     | β     |
| F                  | 70,1 | 7,8          | -6.8              | 24,9  | -34,3 |
| Cl                 | 31,0 | 10,0         | -5,1              | 2,6   | -6,1  |
| Br                 | 18,9 | 11,0         | -3,8              | -7,9  | -1,4  |
| I                  | -7,2 | 10,9         | -1,5              | -38,5 | 7,0   |
| OR                 | 49,0 | 10,1         | -6,2              | 29,4  | -38,9 |
| OCOMe              | 52,0 | 6,5          | -6,0              | 18,2  | -27,1 |
| $NR_2$             | 28,3 | -11,3        | -5,1              |       |       |
| $NO_2$             | 61,6 | 3,1          | -4,6              | 22,3  | -0,9  |
| CN                 | 3,1  | 2,4          | -3,3              | -15   | 15    |
| СООН               | 20,1 | 2,0          | -2,8              | 4,2   | 8,9   |
| СНО                | 29,9 | -0,6         | -2,7              | 13,6  | 13,2  |
| CH=CH <sub>2</sub> | 21,5 | 6,9          | -2,1              | 14,8  | -5,8  |
| C≡C                | 4,4  | 5,6          | -3,4              |       |       |
| Ph                 | 22,1 | 9,3          | -2,6              | 12,5  | -11,0 |
| Me                 | 9.1  | 9,4          | -2,5              | 12,9  | -7,4  |

Ситуация в бензольном ряду несколько иная (табл. 6.3). Сдвиги сигналов *ипсо*углеродов в сильное поле здесь проявляются не только для тяжелых атомов, но также для
групп CN и C≡C. Здесь трудно усмотреть какую-либо корреляцию с электронными
параметрами заместителей. Не видно ясных закономерностей и в сдвигах *орто*-углеродов.
Сдвиги *мета*-углеродов меняются в целом мало. Зато для *пара*-углеродов прослеживается
отчетливая корреляция с электронными параметрами заместителя. Это еще более
наглядно представлено на рис. 6.14.

Рис. 6.14. Эффекты замещения в бензольном ядре. Сдвиги приведены в м.д. от сигнала бензола (128,5 м.д.).

Таблица 6.3. Инкременты заместителей ( $\delta$  м.д.) для расчета химических сдвигов  $^{13}$ С в замещенных бензолах по аддитивной схеме.

|                    | Положения |       |      |       |  |  |
|--------------------|-----------|-------|------|-------|--|--|
| Заместитель        | unco      | орто  | мета | napa  |  |  |
| F                  | 35,1      | -14,3 | 0,9  | -4,4  |  |  |
| Cl                 | 6,4       | 0,2   | 1,0  | -2,0  |  |  |
| Br                 | -5,4      | 3,3   | 2,2  | -1,0  |  |  |
| Ι                  | -32,3     | 9,9   | 2,6  | -0,4  |  |  |
| OR                 | 30,2      | -14,7 | 0,9  | -8,1  |  |  |
| OCOMe              | 23        | -6    | 1    | -2,3  |  |  |
| NR <sub>2</sub>    | 22,4      | -15,7 | 0,8  | -11,8 |  |  |
| NO <sub>2</sub>    | 19,6      | -5,3  | 0,8  | 6,0   |  |  |
| CN                 | -16,0     | 3,5   | 0,7  | 4,3   |  |  |
| СООН               | 2,4       | 1,6   | -0,1 | 4,8   |  |  |
| СНО                | 9,0       | 1,2   | 1,2  | 5,8   |  |  |
| CH=CH <sub>2</sub> | 7,6       | -1,8  | -1,8 | -3,5  |  |  |
| C≡C                | -6,1      | 3,8   | 0,4  | -0,2  |  |  |
| Ph                 | 13,0      | -1,1  | 0,5  | -1,0  |  |  |
| Me                 | 9,3       | 0,6   | 0    | -3,3  |  |  |

Эффекты введения в молекулу двойной связи в существенной степени зависят от типа структуры, в которую она встраивается. Для примера на рис. 6.15 показаны изменения в химических сдвигах углеродов при введении двойной связи в нормальную углеводородную цепь (октан), а на рис. 6.16 — при ее встраивании в циклы разного размера. Сразу бросается в глаза тот факт, что *транс*-двойная связь в цепочке дает слабопольный сдвиг на соседних углеродах, а *цис*-двойная связь — сильнопольный, что можно рассматривать как отчетливое проявление пространственного у —эффекта.



Рис. 6.15. Изменения химических сдвигов углеродов в молекуле октана при введении двойной связи.

При введении в трехчленный, четырехчленный и пятичленный циклы, двойная связь приводит к слабопольному смещению сигналов α-углеродов. А вот в шести- и семичленных циклах наблюдается эффект противоположного знака. Экзоциклическая двойная связь всегда дает заметный слабопольный сдвиг.



Рис. 6.16. Изменения химических сдвигов углеродов в циклических молекулах при введении двойной связи.

Эффекты сопряжения двойной связи проявляются на химических сдвигах олефиновых углеродов отчетливо, что иллюстрируют данные на рис. 6.17. Сопряжение с карбонилом приводит к небольшому слабопольному смещению для  $\alpha$ -углеродов, но значительному для  $\beta$ -углеродов, что с химической точки зрения вполне понятно. Перераспределение электронной плотности в молекуле в этом случае, как мы знаем, хорошо описывается значительным вкладом резонансной структуры  $\mathbf{F}$  для  $\alpha$ , $\beta$ -непредельных соединений.

Рис. 6.18. Влияние эффектов сопряжения на экранирование олефиновых углеродов.

Напротив, введение донорного заместителя с неподеленными электронными парами вызывает сильный слабопольный сдвиг сигналов  $\alpha$ -углеродов и сильный диамагнитный сдвиг  $\beta$ -углеродов, что с химической точки зрения также совершенно понятно.

В самом слабом поле в спектрах <sup>13</sup>С-ЯМР расположены сигналы карбонильных групп, положение которых весьма характеристично. Представительная подборка значений химических сдвигов дана на рис. 6.19.

Из этих данных ясно видно, что группы с неподеленными парами, обладающие мощным мезомерным эффектом, при введении к карбонилу вызывают сильный диамагнитный сдвиг.



Рис. 6.19. Химические сдвиги <sup>13</sup>С-ЯМР карбонильных групп в различных соединениях.

Опытный исследователь всегда надежно определит тип карбонильного соединения по химическому сдвигу карбонила. Сопряжение карбонила с двойной связью или

ароматическим кольцом вызывает дополнительный диамагнитный сдвиг (рис. 6.20). Но если появляются стерические взаимодействия, препятствующие сопряжению, сигнал снова смещается в слабое поле.

Рис. 6.20. Влияние сопряжения с двойной связью и бензольным кольцом на химические сдвиги карбонильного углерода в органических молекулах.

Приведенные данные по значениям химических сдвигов углерода-13 показывают, что эти значения содержат исключительно ценную структурную информацию. Немного позже я приведу несколько примеров ее использования.

## 6.4. Константы спин-спинового взаимодействия $J_{CH}$ и $J_{CC}$ . 6.4.1.Экспериментальные методы измерения $J_{CH}$ .

Как ясно из предшествующего изложения, получить информацию о КССВ  $J_{CH}$  и  $J_{CC}$  из спектров  $^{13}$ С-ЯМР при природном содержании значительно труднее, чем о  $J_{HH}$  из протонных спектров. Поэтому на первых этапах развития ЯМР для измерения этих констант чаще всего использовали специально синтезированные молекулы, обогащенные изотопом  $^{13}$ С. Вот один из первых примеров, который я взял из работы Грэхэма 1963 г. (Can.J.Chem., 1963, 41, 2114). В ней авторы, исходя их  $Ba^{13}CO_3$  (это стандартный источник изотопа  $^{13}$ С для синтеза изотопно меченых органических молекул) в несколько стадий синтезировали ацетилен, этилен и этан с высоким обогащением по  $^{13}$ С и измерили спектры  $^{13}$ С-ЯМР и  $^{1}$ Н-ЯМР этих простых веществ в виде чистых жидкостей при низкой температуре. На рис. 6.21 показан спектр  $^{13}$ С-ЯМР меченого ацетилена на частоте 15 МГц.

Легко видеть, что это суперпозиция спектров двух изотопомеров – H-C $\equiv$  <sup>13</sup>C-H и H- $^{13}C$  $\equiv$  <sup>13</sup>C-H. Введение изотопной метки в молекулу ацетилена делает ее асимметричной. Поэтому спектр H-C $\equiv$  <sup>13</sup>C-H относится к типу ABX, и на рис. 6.21 мы видим X-часть этого спектра, содержащего 4 линии (средний спектр). Спектр дважды меченого ацетилена H-G $\equiv$  G $\oplus$  G $\oplus$ 

Таблица 6.4. Константы спин-спинового взаимодействия в молекулах ацетилена, этилена и этана, полученные из анализа спектров  $^{13}$ С- и  $^{1}$ Н-ЯМР изотопно обогащенных молекул H-С $\equiv$   $^{13}$ С-H и H- $^{13}$ С $\equiv$   $^{13}$ С-H (в  $\Gamma$ ц).

| Соединение | $^{I}J_{CC}$ | $^{I}J_{CH}$ | $^2J_{CH}$ | $J_{HH}$                                        |
|------------|--------------|--------------|------------|-------------------------------------------------|
| ацетилен   | 170,6        | 248,7        | 49,7       | $^{3}J_{HH} = 9.8$                              |
| этилен     | 67,24        | 156,2        | -2,4       | $^{2}J_{HH}$ =2,2; $^{3}J_{\text{цис}}$ = 11,5; |
|            |              |              |            | ${}^{3}J_{\text{транс}} = 19,1$                 |
| этан       | 34,64        | 125,0        | -4,8       | $^{3}J_{HH} = 8.0$                              |

Многостадийный химический синтез изотопно меченых молекул — занятие очень трудоемкое, однако меченые  $^{13}$ С и  $^{15}$ N биомолекулы (белки и нуклеиновые кислоты) с большими молекулярными массами можно получить более экономными методами биоинженерии, выращивая бактерии-продуценты на специальных средах, содержащих меченые изотопом  $^{15}$ N.

В XX'- части AA'XX' спектра  $H^{-13}C \equiv ^{13}C^{-1}H$  должно быть 10 линий, но в экспериментальном спектре видны только 8. Это связано с тем, что две центральные линии спектра в действительности являются дублетами. Расстояние между линиями этих дублетов так мало, что они сливаются.

Очень важным источником знаний о КССВ  $J_{CH}$  на начальном этапе развития спектроскопии ЯМР была также регистрация сателлитов  $^{13}\text{C-}^{1}\text{H}$  в спектрах  $^{1}\text{H-}$ ЯМР относительно простых молекул. Рассмотрим в качестве простейшего примера спектр  $^{1}\text{H-}$ ЯМР хлороформа (рис. 6.22). Уже хорошо знакомый нам интенсивный синглет с химическим сдвигом 7,27 м.д. в нем принадлежит изотопомеру  $^{12}\text{CHCl}_{3}$ . Однако кроме него в природной смеси присутствует еще 1,07% изотопомера  $^{13}\text{CHCl}_{3}$ . Его протонный сигнал (А-часть АХ спектра) представляет собой дублет с расщеплением, равным  $^{1}J_{CH}$ . Оба компонента его с интенсивностями около 0,5% от интенсивности основного сигнала

симметрично расположены по обе стороны от него, и мы легко обнаруживаем их, если спектр записан с хорошим соотношением сигнал/шум. Обратите также внимание на то, что в этом спектре присутствуют еще два симметрично расположенных спутника, которые представляют собой «боковые линии от вращения образца».



Рис. 6.21. Спектр <sup>13</sup>С-ЯМР ацетилена (15 МГц), обогащенного изотопом <sup>13</sup>С, записанный для жидкого вещества при -70 С. Экспериментальный спектр (показан вверху) представляет собой суперпозицию спектров двух изотопомеров H-C≡<sup>13</sup>C-H и H-<sup>13</sup>C≡<sup>13</sup>C-H. Разложение на компоненты дано ниже.



Рис. 6.22. Спектр  $^1$ Н-ЯМР хлороформа с сателлитами  $^{13}$ С- $^1$ Н. Буквами **R** помечены боковые сигналы от вращения.

Как Вы помните, для усреднения неоднородности поля  $B_{\theta}$  в плоскости xy ампулу с образцом в магните обычно вращают вокруг оси z с частотой около 20  $\Gamma$ ц. Это приводит к модуляции поля  $B_{\theta}$  и появлению в спектре «боковых линий от вращения образца»,

интенсивность которых при хорошей настройке прибора не превышает 1-1,5% от основного сигнала. Но отличить эти паразитные сигналы от сателлитов  $^{13}$ C- $^{1}$ H легко. Они исчезают, если остановить вращение, а при изменении частоты вращения соответственно меняют свое положение. В самых современных приборах достигается столь высокая однородность поля, что необходимость использования вращения образца отпадает.

На рис. 6.23 показан спектр <sup>1</sup>H-ЯМР *транс*-1,2-дихлорэтилена. Как мы видим, сателлиты <sup>13</sup>C-<sup>1</sup>H в нем имеют дублетную структуру. Появление ее обусловлено проявлением КССВ  ${}^{3}J_{HH}$  между протонами при двойной связи. В молекуле основного изотопомера  $Cl^{12}CH=^{12}CHCl$  эта КССВ не наблюдается по той же причине, что и в молекуле ацетилена - оба протона химически и магнитно эквивалентны, т.к. молекула симметрична. Сателлиты <sup>13</sup>С-<sup>1</sup>Н в спектре принадлежат минорному изотопомеру  $Cl^{13}CH=^{12}CHCl$ . Его молекула уже асимметрична. Введение изотопа  $^{13}C$  приводит к появлению очень маленького различия в химических сдвигах двух атомов водорода при двойной связи. О таких «изотопных химических сдвигах» я подробно расскажу Вам в одной из лекций второй части этого курса. В связи с этим спектр  $Cl^{13}CH=^{12}CHCl$ следовало бы классифицировать как АВХ, и сателлиты <sup>13</sup>С-<sup>1</sup>Н в протонном спектре представляют собой АВ-часть этого спектра. В действительности спектр относится к типу АМХ, что может вызвать наше удивление, поскольку здесь не выполняется правило для слабо связанных систем (напомню еще раз формулу  $\Delta \delta \geq 6J$ ). Но система все же остается слабо связанной, поскольку выполняется обратное соотношение  $\Delta \delta << 6J$ . Если пренебречь очень малым изотопным сдвигом и принять за начало отсчета  $v_{\theta}$  положение сигнала основного изотопомера Cl<sup>12</sup>CH=<sup>12</sup>CHCl, резонансные частоты A и M протонов можно записать в виде:

$$v_A^{\ 1} = v_0 + 1/2^{\ 1} J_{CH}$$
 $v_A^{\ 2} = v_0 - 1/2^{\ 1} J_{CH}$ 
 $v_M^{\ 1} = v_0 + 1/2^{\ 2} J_{CH}$ 
 $v_M^{\ 2} = v_0 - 1/2^{\ 2} J_{CH}$ 

Тогда, с учетом КССВ  ${}^3J_{HH}$  в экспериментальном спектре должно присутствовать 8 линий, а мы наблюдаем только 4! Дело в том, что  ${}^2J_{CH}$  оказывается очень малой, и две из четырех внутренних линий оказываются скрытыми сигналом основного изотопомера, а две другие проявляются лишь как ступеньки на его пьедестале.



Рис. 6.23. Спектр <sup>1</sup>H-ЯМР *танс*-1,2-дихлорэтилена с сателлитами <sup>13</sup>C-<sup>1</sup>H. Вверху показан теоретический спектр с внутренними сателлитами.

Итак, регистрируя в протонных спектрах сателлиты  $^{13}$ С- $^{1}$ Н, можно определить КССВ между эквивалентными протонами, которые не проявляются в спектре основного изотопомера. Эти сателлиты могут иметь весьма сложную форму. В качестве еще одного примера на рис. 6.24 показаны сателлиты  $^{13}$ С- $^{1}$ Н в спектре  $^{1}$ Н-ЯМР диоксана. Интенсивный синглет основного изотопомера в центре «обрезан» для экономии места.



Рис. 6.24. Сателлиты  ${}^{13}\text{C-}{}^{1}\text{H}$  в спектре  ${}^{1}\text{H-ЯМР}$  диоксана.

Снятие вырождения за счет введения изотопной метки приводит к появлению спектра AA'BB'X, относящегося к фрагменту -OCH $_2$ - $^{13}$ CH $_2$ O-. При анализе AA'BB'- части этого спектра, которую мы видим в протонном спектре на рис. 6.24, можно найти все КССВ между протонами этого фрагмента.

Анализ тонкой структуры <sup>13</sup>С-<sup>1</sup>Н в протонном спектре иногда позволяет решать весьма сложные задачи. Вот пример из моей личной исследовательской практики. В одном из первых научных проектов наша группа изучала строение и свойства циклопентадиенильных производных элементов 14 группы (Si, Ge, Sn, Pb). Для соединений кремния и германия было строго установлено  $\eta^1$ -строение: в них атом элемента был связан локализованной о-связью с одним из углеродов кольца. При этом спектры <sup>1</sup>Н-ЯМР этих соединений проявляли необычную температурную зависимость. При низких температурах все протоны С<sub>5</sub>Н<sub>5</sub>-кольца давали ожидаемый сложный спектр АА'ВВ'Х, который при повышении температуры коллапсировал в синглет А<sub>5</sub>, что указывало на протекание в этих соединениях быстрой вырожденной металлотропной перегруппировки. Более подробно я расскажу об этой перегруппировке в следующей лекции. А вот спектр соединения C<sub>5</sub>H<sub>5</sub>SnMe<sub>3</sub> не проявлял температурной зависимости, и вплоть до температуры -100°C все пять протонов циклопентадиенильного кольца давали в спектре острый синглетный сигнал. Ранее такое же поведение было обнаружено для соединения  $(C_5H_5)_2Hg$ . Ha ЭТОМ ртути основании утверждалось, циклопентадиенильные лиганды связаны с атомами ртути и олова в этих соединениях по  $\eta^5$ -типу, т.е так, как в ферроцене и других  $\pi$ -комплексах переходных металлов. Развернулась оживленная научная дискуссия, в которой представление о  $\eta^5$ -строении этих соединений поддержал и А.Н. Несмеянов. Я придерживался противоположной точки зрения, и для того, чтобы отстоять ее, было необходимо найти надежные доказательства.

Одним из критериев могло бы стать сравнение КССВ  $J_{CH}$  и  $J_{HH}$  в  $C_5H_5$ -кольцах соединений обоих типов. Определить эти КССВ из простого  $^1$ H-ЯМР спектра невозможно, поскольку все протоны в кольце эквивалентны. Вот тут на помощь и пришла методика анализа сателлитов  $^{13}$ C- $^1$ H в протонных спектрах. Ясно, что в этом случае замена  $^{12}$ C на  $^{13}$ C снимает вырождение, и спектр  $A_5$  превращается в спектр AA'BB'XY, где Y – ядро  $^{13}$ C. На рис. 6.25 показаны внешние сильнопольные сателлиты  $^{13}$ C- $^1$ H для протонов кольца в протонных спектрах ферроцена и  $C_5H_5$ SnMe3, каждый из которых представляет собой половину AA'BB'X-части этого спектра. Напомню, что этот спектр симметричен относительно центра. Для ферроцена сателлиты  $^{13}$ C- $^1$ H наблюдал и анализировал также

Гольдстейн. Верхние кривые представляют собой экспериментальные спектры, а нижние – теоретические спектры, построенные для наилучших наборов рассчитанных параметров.



Рис. 6.25. Сателлиты  $^{13}$ C- $^{1}$ H в протонных спектрах ферроцена ( $C_5H_5$ ) $_2$ Fe и триметилциклопентадиенилолова  $C_5H_5$ SnMe $_3$ :

- (a) внешний слабопольный сателлит в спектре ( $C_5H_5$ )<sub>2</sub>Fe ( $\Delta v_{1/2} = 0,17$  Гц).
- (б) внешний слабопольный сателлит в спектре  $C_5H_5SnMe_3$  ( $\Delta v_{1/2} = 0.34 \Gamma \mu$ ).

Для  $C_5H_5SnMe_3$  при анализе сателлитных спектров были получены КССВ, представленные в табл. 6.5.

Таблица 6.5. Константы спин-спинового взаимодействия ( $C_5H_5$ -кольцо), полученные при анализе структуры сателлитов  $^{13}C^{-1}H$  в спектре  $C_5H_5SnMe_3$ .

| $J^{I}(H-H)$ | $J^2(H-H)$ | <b>J</b> ( <sup>13</sup> C-C-C-H) | <b>J</b> ( <sup>13</sup> C-C-H) | <b>J</b> ( <sup>13</sup> C-H) |
|--------------|------------|-----------------------------------|---------------------------------|-------------------------------|
| 2,86±0,03    | 0,97±0,03  | 8,05±0,06                         | 4,95±0,06                       | 161,3±0,15                    |

Конечно, если принять для  $C_5H_5SnMe_3$   $\eta^1$ -строение и считать вырождение спектра следствием такой же перегруппировки, как в производных кремния и германия, то нужно иметь в виду, что  $J^1(H-H)$  будет представлять собой усредненную вицинальную КССВ, а  $J^2(H-H)$  – усредненную «диагональную» КССВ через 4 связи в пятичленном кольце:

$$J^{1}(H-H) = \frac{1}{5}(J_{12} + J_{23} + J_{34} + J_{45} + J_{15})$$
  

$$J^{2}(H-H) = \frac{1}{5}(J_{13} + J_{14} + J_{24} + J_{25} + J_{35})$$



Сопоставление полученных параметров с усредненными по той же схеме КССВ, найденными при анализе спектров циклопентадиенильных производных кремния и германия, для которых  $\eta^1$ -строение было доказано однозначно, показало почти полную идентичность, а сравнение их с параметрами, полученными при анализе сателлитных спектров ферроцена и других  $\eta^5$ -комплексов – полное отсутствие сходства. Обстоятельная статья была опубликована в международном журнале (Yu.K. Grishin, N.M. Sergeyev, Yu.A. Ustynyuk, *J.Organomet.Chem.*, **1972**, *34*, 105-118), и это послужило косвенным, но важным аргументом в споре. А вслед за этим нам удалось получить и неопровержимые доказательства  $\eta^1$ -строения  $C_5H_5SnMe_3$ .

С появлением регистрации спектров  $^{13}$ С-ЯМР с *«прерываемой широкополосной развязкой»* от протонов, о которой я уже рассказал, она стала основным методом экспериментального определения КССВ  $J_{CH}$ , и большинство результатов для молекул малой и средней массы было получено с помощью именно этого метода. Сейчас все большее количество таких данных получается из двумерных спектров.

### 6.4.2. Факторы, определяющие значения $J_{CH}$ .

### <u>Прямые константы</u> ${}^{I}\boldsymbol{J}_{\boldsymbol{CH}}$ .

Уже простой взгляд на значения КССВ  ${}^{I}J_{CH}$ .в табл. 6.6 наводит на мысль о связи этих констант с типом гибридизации углерода и с s-характером связи С-Н. В существовании этой связи, которая наилучшим образом выражается уравнениями (6.1) или (6.2), нет ничего удивительного. Ведь только s-электроны имеют ненулевую вероятность пребывания на ядре атома (контактное взаимодействие Ферми).

$$^{1}J_{CH} = 500 \times \frac{\% \text{ s}}{100}$$
 (6.1)

$$^{1}J_{CH} = 570 \times \frac{\% \text{ s}}{100} - 18,4$$
 (6.2)

В таблице 6.6 представлены данные для ряда соединений с разными типами гибридизации, которые подтверждают наличие такой связи, но вместе с тем указывают на то, что существуют и другие факторы, оказывающие влияние на  ${}^{I}\boldsymbol{J}_{CH}$ .

Таблица 6.6. Значения КССВ  ${}^{I}\boldsymbol{J}_{CH}$  для атомов углерода в разных гибридизациях.

| sp <sup>3</sup> (25% s)             |       | sp <sup>2</sup> (33                | % s)  | sp (50% s)   |   |
|-------------------------------------|-------|------------------------------------|-------|--------------|---|
| H-CH₃                               | 125.0 | H <sub>2</sub> C=CH <sub>2</sub>   | 156.2 | H-C≡C-H 249  | 9 |
| H-CH <sub>2</sub> CH <sub>3</sub>   | 124.9 | H <sub>2</sub> C=C=CH <sub>2</sub> | 168.2 | H-C≡C-Ph 248 | 3 |
| H-CH(CH <sub>3</sub> ) <sub>2</sub> | 119.4 |                                    | 159   | H-C≡C-F 275  | 5 |
| H-C(CH <sub>3</sub> ) <sub>3</sub>  | 114.2 |                                    |       | H-C≡N 269    | 9 |
| H-CH <sub>2</sub> NH <sub>2</sub>   | 133.0 | CH <sub>3</sub>                    |       | H-C≡Ň-H 320  | ) |
|                                     |       | <del></del> H                      | 168   |              |   |
|                                     |       | CH₃′                               |       |              |   |

Данные таблицы 6.7 ясно свидетельствуют о том, что главный из этих факторов – электроотрицательность заместителей при углероде. Электроноакцепторные заместители приводят к существенному росту  ${}^{1}J_{CH}$ , а электронодонорные – к ее уменьшению. При этом эффекты заместителей, если опираться на данные по полизамещенным метанам, практически аддитивны.

Таблица 6.7. Влияние заместителей на величины  ${}^{1}\boldsymbol{J}_{CH}$ .Значения даны в  $\Gamma$ ц.

222.0

194.8

175.0

По существу, введение электроноакцепторного заместителя ведет к увеличению s-характера связи С-H, а донорного — к его уменьшению. На качественном уровне это вполне понятно: s-орбитали имеют более низкие энергии, чем p-орбитали, и участвуют в образовании более глубоко лежащих молекулярных орбиталей. Любые перераспределения электронной плотности в молекуле осуществляются за счет смещения более высоко лежащих по энергии МО, в которые основной вклад дают p-AO. Поэтому вклад 2s-AO в  $\sigma$ -MO связи С-H растет.

159.2

156.2

200.2

Вы, конечно, помните, что  $\sigma$ -связи С-С в малых циклах имеют повышенный p-характер, что неизбежно ведет к повышению s-характера связей С-Н и соответствующему росту  ${}^{I}J_{CH}$ . Подборку значений констант  ${}^{I}J_{CH}$ . в циклических и полициклических

системах я привожу в табл. 6.8 без особых комментариев, предоставляя вам возможность самостоятельно проанализировать их.

Таблица 6.8. Значения  ${}^{I}\boldsymbol{J}_{CH}$ .в циклических и полициклических системах.



Весьма любопытны данные относительно значений аксиальных и экваториальных  ${}^{I}J_{CH}$ .в шестичленных циклах. В.А. Чертков и Н.М. Сергеев в блестящей работе по анализу спектров ЯМР циклогексана при низкой температуре (*J.Am.Chem.Soc.* **1977**, *99*, 6750, об этой работе я еще расскажу более подробно) обнаружили небольшое различие ( $\Delta^{I}J_{CH}$ .= 4 Гц) аксиальной и экваториальной  ${}^{I}J_{CH}$  в циклогексане. Аксиальная КССВ меньше. Этот эффект выражен более отчетливо для 1,3-диоксана ( $\Delta^{I}J_{CH}$ .= 10,1 Гц), что обусловлено, по всей видимости, переносом электронной плотности неподеленных пар атомов кислорода на  $\sigma^*$ -орбиталь связи С-Н ( $n \rightarrow \sigma^*_{CH}$  взаимодействием):

На основании нашего короткого обсуждения можно сделать вывод, что  ${}^{I}J_{CH}$  содержат богатую информацию о геометрии молекул и их электронной структуре. Приведенные здесь данные об этих КССВ не претендуют на полноту. Ежегодно публикуется более сотни работ, в которых приводятся все новые сведения.

### Константы ${}^2\boldsymbol{J}_{\boldsymbol{CH}}$ и ${}^3\boldsymbol{J}_{\boldsymbol{CH}}$ .

Относительно этих констант нет столь систематических и полных данных, как о  ${}^{I}J_{CH}$ . Относительно геминальных  ${}^{2}J_{CH}$  известно, что они могут быть как положительными, так и отрицательными. Они изменяются симбатно с соответствующими  $J_{HH}$ , но по абсолютной величине, как правило, меньше их. В качестве примеров в табл. 6.9

приведены значения протон-протонных и углерод-протонных геминальных и вицинальных КССВ в нескольких типах структур.

Таблица 6.9. Протон-протонные и углерод-протонные геминальные и вицинальные КССВ в нескольких типах структур.

$$J_{HH} = 0$$

$$J_{CH} = -0.31$$

$$J_{CH} = -0.31$$

$$J_{CH} = 2.12$$

$$J_{CH} = -0.50$$

$$J_{CH} = -0.60$$

Относительно  ${}^{3}\boldsymbol{J}_{CH}$  можно заметить, что они, подобно  ${}^{3}\boldsymbol{J}_{HH}$ , проявляют ту же зависимость от двугранного угла, что и зависимость Карплуса (рис. 4.3 в лекции 4). В алкенах  $mpanc^{-3}\boldsymbol{J}_{CH}$  (7 – 15  $\Gamma$ ц) больше  $\mu uc^{-3}\boldsymbol{J}_{CH}$  (5 – 9  $\Gamma$ ц), и эта зависимость весьма часто используется для определения конфигурации двойной связи в тризамещенных алкенах. Эти величины также зависят от электронных параметров заместителей. В таблице 6.10 приведено несколько типичных примеров.

Таблица 6.10. Значения  $mpanc^{-3} \boldsymbol{J_{CH}}$  и  $\mu uc^{-3} \boldsymbol{J_{CH}}$  в замещенных алкенах.

# 6.5. Пример постановки сложной задачи в области <sup>13</sup>C-ЯМР и ее блестящего экспериментального решения.

В каждой области науки существуют «классические» работы, в которых решается одна из актуальных и сложных задач на пределе возможностей того времени, когда она поставлена. Полученные результаты таких работ входят в учебники, а сами они активно цитируются десятилетиями. Я не могу отказать себе в удовольствии рассказать вам о блестящей работе двух моих коллег, сотрудников нашей лаборатории, которая появилась в Журнале американского химического общества в 1977 г (V.A. Chertkov, N.M. Sergeyev, *J.Am.Chem.Soc.* 1977, 99, 6750-6752). Сразу замечу, что «прорваться в *JACS*» для российского автора и сейчас нелегко, а в то время было еще много тяжелее. Но эту работу взяли сразу и с прекрасными отзывами рецензентов.

Вернемся еще раз к таблице 6.9. Внимательные слушатели и читатели, глядя на нее, всегда обращают внимание на данные по КССВ  $J_{CH}$  для двух конформеров циклогексана. Мы ведь знаем, что при комнатной температуре конверсия цикла в циклогексане протекает столь быстро, что спектр коллапсирует в синглет. А при низких температурах спектры <sup>1</sup>Н-ЯМР столь сложны, что их невозможно проанализировать (12 спинов!). Как же Н.М. Сергееву и В.А. Черткову, которые их получили, удалось обойти эти трудности? Я был свидетелем всех стадий подготовки, выполнения и написания этой работы. Н.М. Сергеев предложил избавиться от проблемы мультиплетности, синтезировав молекулу  $C_6D_{11}H$ , в которой остался только один протон. Ф. Бови раньше уже использовал этот прием для точного определения барьера конверсии цикла в циклогексане по спектрам динамического <sup>1</sup>Н-ЯМР. Если записывать при низкой температуре спектры двойного резонанса  ${}^{13}\text{C}-\{{}^{2}\text{D}\}$ -ЯМР, открывалась возможность увидеть сигналы обоих конформеров. В.А. Чертков аккуратно выполнил синтез. Сначала сполна дейтерированный циклогексан  $C_6D_{12}$ , который производится и продается как дейтерированный растворитель для ЯМР с обогащением по дейтерию больше 99,95%, был однократно прохлорирован, затем  $C_6D_{11}Cl$ был превращен в магнийорганическое производное, простым гидролизом которого и был получен  $C_6D_{11}H$ . Спектры 10%-ного раствора  $C_6D_{11}H$  в сероуглероде были записаны при комнатной температуре и при температуре -104°C. На рис. 6.26 я привожу их так, как они были представлены в журнале. Замечательные легко интерпретируемые спектры получены благодаря четкой постановке задачи, отличному выбору объекта и блестящему экспериментальному исполнению.



Рис. 6.26. Спектры  $^{13}$ C- $\{^2D\}$ -ЯМР С $_6D_{11}$ H (25,16 МГц) при температурах +34°C (а) и -104°C (b). Центральные группы сигналов представлены более подробно на врезках. Даны отнесения расщеплений.

### 6.6. Пример решения структурной задачи.

Обычно при решении структурных задач химик-исследователь для всех препаратов, находящихся в работе, сразу проводит измерение полного набора спектров, в который входят  ${}^{1}$ Н-ЯМР и  ${}^{13}$ С- ${}^{1}$ Н}-ЯМР. В дополнение к этому, как правило, измеряются также спектры DEPT или INEPT, которые, как мы уже знаем, позволяют сразу определить число протонов, непосредственно связанных с каждым из углеродных атомов в молекуле. Спектроскопия  ${}^{13}$ С- ${}^{1}$ Н}-ЯМР особенно информативна в том случае, когда приходится изучать соединения с длинными алифатическими цепочками. Малый диапазон изменения химических сдвигов  ${}^{1}$ Н в таких соединениях обычно не позволяет сделать окончательные

выводы о структуре. Но по спектрам  $^{13}$ C- $\{^{1}$ H $\}$ -ЯМР (разумеется, и при использовании информации  $^{1}$ H-ЯМР) легко различаются, например, структурные изомеры алканов и алкенов.

Методика решения структурных задач с использованием данных <sup>13</sup>С-ЯМР не отличается от той, которую мы использовали в том случае, когда имеются только данные <sup>1</sup>Н-ЯМР (см. раздел 5.4 предыдущей лекции). Но при наличии спектра <sup>13</sup>С-{<sup>1</sup>H}-ЯМР у нас появляется дополнительная возможность сразу по нему определить число неэквивалентных атомов углерода в молекуле, а также и их тип. Это особенно полезно, когда в структуре имеются углероды, не несущие протонов. Разберем только один весьма простой пример.

На рис. 6.27 представлен спектр  $^{1}$ H-ЯМР и его фрагменты, а на рис. 6.28 – спектр  $^{13}$ C- $\{^{1}$ H $\}$ -ЯМР соединения с брутто-формулой С $_{8}$ H $_{12}$ O $_{2}$ . Определите его структуру.

Значения химических сдвигов в спектре <sup>13</sup>C-{<sup>1</sup>H}-ЯМР этого соединения с указанием мультиплетности, определенной из спектра DEPT, приведены в табл. 6.11. Заметим, что в этом спектре присутствует также сигнал с химическим сдвигом 77 м.д. Он имеет вид триплета 1:1:1. Этот сигнал принадлежит дейтерохлороформу. Триплетное расщепление обусловлено спин-спиновым взаимодействием <sup>13</sup>C-<sup>2</sup>H. Напомню, что спин дейтерия равен 1.

Таблица 6.11. Химические сдвиги и мультиплетности сигналов в спектре  $^{13}$ C- $\{^1$ H $\}$ -ЯМР соединения  $C_8$ H $_{12}$ O $_2$  по данным DEPT.

| Химический сдвиг, м.д. | 154,2 | 89,7 | 72,8 | 52,4   | 29,5  | 21,9  | 18,3  | 13,4   |
|------------------------|-------|------|------|--------|-------|-------|-------|--------|
| Мульти-                | Син-  | Син- | Син- | Квад-  | Трип- | Трип- | Трип- | Квад-  |
| плетность              | глет  | глет | глет | руплет | лет   | лет   | лет   | руплет |





Рис. 6.27. Спектр  $^{1}$ Н-ЯМР соединения  $C_{8}H_{12}O_{2}$  и его фрагменты (вверху).





Рис. 6.28. Спектр  $^{13}$ C- $\{^1$ H $\}$ -ЯМР соединения  $C_8$ H $_{12}$ O $_2$ . Высокопольная часть представлена вверху.

При решении этой задачи сразу обратимся к данным по  $^{13}$ С. В молекуле мы видим 8 неэквивалентных атомов углерода, при этом мультиплетность указывает на присутствие

двух метилов (13,4 м.д. и 52,4 м.д.), трех метиленовых групп (29,5 м.д., 21,9 м.д. и 18,3 м.д.) и трех «четвертичных» углеродов, не несущих протонов. Сигнал в самом слабом поле мы опознаем сразу по химическому сдвигу (см. рис. 6.19) — это сложноэфирный карбонил. Осталось совсем немного — собрать скелет.

По мультиплетам в сильном поле в протонном спектре легко опознаем цепочку из 4 углеродов СН<sub>3</sub>СН<sub>2</sub>СН<sub>2</sub>СН<sub>2</sub>. Подробный анализ этой части спектра Вы легко проведете самостоятельно. При этом прошу обратить внимание на следующий момент: мультиплеты в средней части спектра имеют усложненную форму и уширены. Объясните это. Определите тип этого спектра. Синглет с химическим сдвигом 3,7 м.д. и относительной интенсивностью 3 явно принадлежит метилу группы СН<sub>3</sub>О. Осталось только определить тип двух четвертичных углеродов с химическими сдвигами 89,7 и 72,8 м.д. Это тоже не сложно – именно в этой области лежат сигналы ацетиленовых углеродов. Тогда структура легко собирается: СН<sub>3</sub>СН<sub>2</sub>СН<sub>2</sub>С≡ССООСН<sub>3</sub>.

На семинарских занятиях Вам предстоит прорешать несколько десятков таких и более сложных задач. Я очень рекомендую Вам также потренироваться в этом самостоятельно. Воспользуйтесь для этого великолепным набором тренировочных задач профессора Крейга Мерлика на сайте Факультета химии и биохимии Калифорнийского университета в Лос-Анжелесе (<a href="http://w3.chem.ucla.edu/~webspectra/#Problems">http://w3.chem.ucla.edu/~webspectra/#Problems</a>). Я сам получил большое удовольствие, разбирая некоторые из них.