<u>Central problem</u>: How to calculate macroscopic, time-averaged properties from rapidly fluctuating microscopic quantities?

Brute force approach: Time-average over the microscopic properties

 $f_{obs} \equiv \text{observed macroscopic property - pressure, etc.}$ $f(\mathbf{q}^{3N}, \mathbf{p}^{3N}) \equiv \text{microscopic mechanical variable}$

 $f_{obs} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} f(\mathbf{q}^{3N}, \mathbf{p}^{3N}) d\tau' \quad \text{Time average}$

But this requires calculation of time-dependent trajectories for all N particles!

<u>Better approach</u>: <u>ENSEMBLE THEORY</u> Developed by J. Willard Gibbs - founder of statistical mechanics

Replaces time average with ensemble average

Ensemble = collection of all possible states of an assembly

<u>e.g.</u> assembly of only 2 particles <u>quantum description</u> Constant energy ensemble with <u>7 quanta</u> of translational energy

<u>State</u>	$\underline{n_{1x}}$	n_{1y}	$\underline{n_{1z}}$	$\underline{n_{2x}}$	$\frac{n_{2y}}{2}$	n_{2z}	
α	2	1	1	1	1	1	These are all of the 7-quanta
β	1	2	1	1	1	1	states
γ	1	1	2	1	1	1	<u>N=2</u>
δ	1	1	1	2	1	1	$E_{\alpha} = \sum_{i=1}^{n} \varepsilon_i$
Е	1	1	1	1	2	1	h^{2} (2, 2, 2) h^{2} (2, 3)
η	1	1	1	1	1	2	$\mathcal{E}_{i} = \frac{n}{8ma^{2}} \left(n_{ix}^{2} + n_{iy}^{2} + n_{iz}^{2} \right) = \frac{n}{8ma^{2}} (3 \text{ or } 6)$

classical description

specify all the position & momentum variables

$$\frac{p_{1x} p_{1y} p_{1z} p_{2x} p_{2y} p_{2z}}{q_{1x} q_{1y} q_{1z} q_{2x} q_{2y} q_{2z}} \qquad E_{\alpha} = \sum_{i=1}^{N-2} \varepsilon_i \qquad \varepsilon_i = \left(p_{ix}^2 + p_{iy}^2 + p_{iz}^2\right)/2m$$

The *p* values squared must add to give the correct total energy.

QM ensemble average is a sum over states CM ensemble average is an integral over states

ERGODIC HYPOTHESIS: Time average \Leftrightarrow Ensemble average

Ensemble average for macroscopic property f

 $\overline{f} = \sum_{j} P_{j} f_{j}$ $P_{j} =$ probability that assembly is in distinguishable assembly state j $\sum_{i} P_{j} = 1$ probabilities are normalized

e.g. ensemble average energy: $\overline{E} = \sum_{j} P_{j}E_{j}$ note E_{j} are assembly energies

Ensemble average for continuous variables - classical treatment

$$\overline{f} = \int \cdots \int d\underline{\mathbf{q}}^{3N} d\underline{\mathbf{p}}^{3N} P(\underline{\mathbf{q}}^{3N}, \underline{\mathbf{p}}^{3N}) f(\underline{\mathbf{q}}^{3N}, \underline{\mathbf{p}}^{3N})$$

where $P(\underline{\mathbf{q}}^{3N}, \underline{\mathbf{p}}^{3N}) d\underline{\mathbf{q}}^{3N} d\underline{\mathbf{p}}^{3N} \equiv \text{probability of assembly being in volume element}$ $d\underline{\mathbf{q}}^{3N} d\underline{\mathbf{p}}^{3N}$ centered at $(\underline{\mathbf{q}}^{3N}, \underline{\mathbf{p}}^{3N})$

In either QM or CM case, we need a complete list of all the *distinguishable* assembly states and their probabilities P_j . How do we determine P_j ?

They must give the minimum free energy under the experimental conditions! e.g. minimum Helmholtz free energy A if we have fixed (N, V, T)

CANONICAL ENSEMBLE = subject to constraint of constant (N, V, T)- closed, thermodynamically stable system

The states of the assembly, given by $\{P_j\}$, must minimize A.

We need to write A in terms of the P_j values. How?

$$A = E - TS$$
 $\overline{E} = \sum_{j} P_{j}E_{j} \implies A = \sum_{j} P_{j}E_{j} - TS$

What about entropy S? The connection between S and $\{P_j\}$ is assumed to be.....

$$S = -k \sum_{j} P_{j} \ln P_{j}$$

Central assumption of Boltzmann (originally in somewhat different form that we'll see shortly). No derivation – only plausibility arguments. Statistical mechanics is built on this assumption!

 $k = R/N_A = 1.38 x 10^{-23}$ J/K = Boltzmann constant

$$A = E - TS = \sum_{j} P_{j}E_{j} + kT\sum_{j} P_{j}\ln P_{j} = \sum_{j} P_{j}\left(E_{j} + kT\ln P_{j}\right)$$

To find the $\{P_j\}$ values that minimize A, imagine the real assembly at equilibrium, with the minimum A and the probabilities $\{P_j\}$, and other assemblies with non-equilibrium A and different $\{P_j\}$ values.

Introduce constraint $\sum_{j} P_{j} = 1$ After $P_{j} \rightarrow P_{j} + \delta P_{j}$ still $\sum_{j} (P_{j} + \delta P_{j}) = 1$

Probabilities still add to 1 before or after the change $\{\delta P_j\}$.

Then
$$\sum_{j} \delta P_{j} = 0 \implies \delta P_{1} = -\sum_{j=2}^{N} \delta P_{j}$$

$$\delta A = \delta P_1 \Big[E_1 + kT (\ln P_1 + 1) \Big] + \sum_{j=2}^N \delta P_j \Big[E_j + kT (\ln P_j + 1) \Big] = 0$$

$$\delta A = \sum_{j=2}^N \delta P_j \Big[(E_j - E_1) + kT (\ln P_j - \ln P_1) \Big] = 0$$

The δP_j 's from j = 2 to Nare completely independent, for arbitrary $\{\delta P_j\}$, so

$$(E_{j} - E_{1}) + kT (\ln P_{j} - \ln P_{1}) = 0 \implies \frac{P_{j}}{P_{1}} = \frac{e^{-E_{j}/kT}}{e^{-E_{1}/kT}}$$

$$P_{j} = P_{1}e^{E_{1}/kT}e^{-E_{j}/kT} \qquad \sum_{j} P_{j} = 1 = P_{1}e^{E_{1}/kT}\sum_{j} e^{-E_{j}/kT}$$

$$P_{1} = \frac{e^{-E_{1}/kT}}{\sum_{j} e^{-E_{j}/kT}} \quad \text{same for } P_{2}, P_{3}, \dots, P_{n}, \text{ any } P_{j}$$

$$\boxed{ P_{n} = \frac{e^{-E_{n}/kT}}{\sum_{j} e^{-E_{j}/kT}} \quad \text{or} \quad P_{j} = \frac{e^{-E_{j}/kT}}{\sum_{j} e^{-E_{j}/kT}} }$$

<u>Canonical Distribution Function</u> gives the probability for the jth distinguishable state in the ensemble. This distribution minimizes $A \Rightarrow equilibrium$ distribution.

We needed the key assumption $S = -k \sum_{j} P_{j} \ln P_{j}$

This leads to the result that $\underline{P_i}$ depends on $\underline{E_i}$ only

- \Rightarrow equal energy states have equal probabilities (seems highly plausible)
- \Rightarrow probability decreases exponentially w/ energy (familiar dependence)
- \Rightarrow probability of high-energy state increases with T(also familiar)

Denominator has special name.....CANONICAL PARTITION FUNCTION Q

$$Q(N,V,T) = \sum_{j} e^{-E_{j}/kT}$$

Sum of "Boltzmann factors" $e^{-E_j/kT}$ over all the assembly states Originally called "Zustandsumme" = Z = "sum over states"

 ${\cal Q} \, \text{is a} \, \underline{\text{very}} \, \text{important quantity}!$ So let's rewrite ${\it P}_{j}$ in terms of it:

$$P_{j} = \frac{e^{-E_{j}/kT}}{\sum_{j} e^{-E_{j}/kT}} = \frac{e^{-E_{j}/kT}}{Q}$$

We'll be able to use Q, instead of any individual P_j values, to calculate everything! e.g. calculation of energy \overline{E} :

$$\overline{E} = \sum_{j} P_{j} E_{j} = f(Q)$$

Define $\beta = 1/kT$ so differentiation is simpler

$$Q(N,V,T) = \sum_{j} e^{-E_{j}/kT} = \sum_{j} e^{-\beta E_{j}} \qquad \frac{\partial Q}{\partial \beta} = -\sum_{j} E_{j} e^{-\beta E_{j}}$$

Recall $P_{j} = \frac{e^{-E_{j}/kT}}{Q}$ so $e^{-\beta E_{j}} = QP_{j} \implies \frac{\partial Q}{\partial \beta} = -\sum_{j} P_{j}E_{j}Q = -Q\sum_{j} P_{j}E_{j} = -Q\overline{E}$
 $\overline{E} = -\frac{1}{Q}\frac{\partial Q}{\partial \beta} = -\frac{\partial \ln Q}{\partial \beta} = -\frac{\partial \ln Q}{\partial (1/kT)}$ $\overline{E} = kT^{2}\frac{\partial \ln Q}{\partial T}$

Ensemble average energy \overline{E} in terms of Q, not P_{j} .

How about entropy?

$$S = -k\sum_{j} P_{j} \ln P_{j} = -k\sum_{j} P_{j} \ln \left(\frac{e^{-E_{j}/kT}}{Q}\right) = -k\sum_{j} P_{j} \left(-\frac{E_{j}}{kT} - \ln Q\right) = \frac{\sum_{j} P_{j}E_{j}}{T} + k \ln Q$$
$$S = k \ln Q + \frac{\overline{E}}{T} = k \ln Q + kT \left(\frac{\partial \ln Q}{\partial T}\right)_{N,V}$$

Writing all thermodynamic functions or macroscopic properties in terms of Q

From thermodynamics..... Helmholtz free energy $A = E - TS = E - kT \ln Q - T \frac{E}{T}$

$$A = -kT\ln Q$$

Monumentally important result!

From thermodynamics, $dA = -pdV - SdT + \mu dN$ (single component system)

pressure
$$p = -\left(\frac{\partial A}{\partial V}\right)_{T,N}$$
 $\left[p = kT\left(\frac{\partial \ln Q}{\partial V}\right)_{T,N} \right]$
chemical potential $\mu = \left(\frac{\partial A}{\partial N}\right)_{T,V}$ $\left[\mu = -kT\left(\frac{\partial \ln Q}{\partial N}\right)_{T,V} \right]$

H = E + pV Homework: G = A + pV Write in terms of Q

Now we have a framework for relating microscopic properties, as given by Q, to macroscopic properties.

Note that $Q(E_j)$ or $P_j(E_j)$ tells us the distribution of assembly states in the ensemble. <u>Only the energy</u> of an assembly state determines its probability. Q and P_j don't depend on any other properties of the states.

Alternate form for the probabilities

Sometimes, more useful than P_j - probability of distinguishable state j - is P(E), probability of finding an assembly with <u>energy E</u>.

Recall $Q(N,V,T) = \sum_{j} e^{-E_{j}/kT} = \dots + e^{-E_{\alpha}/kT} + e^{-E_{\beta}/kT} + \dots$

But many distinguishable states are <u>degenerate</u>, e.g. $E_{\alpha} = E_{\beta} = E_{\gamma} \equiv E$

then
$$Q(N,V,T) = \dots + 3e^{-E/kT} + \dots = \sum_{E} \Omega(N,V,E)e^{-E/kT}$$

 $\Omega(N, V, E) =$ degeneracy = # distinguishable assembly states with energy E

 $Q(N,V,T) = \sum_{j} e^{-E_{j}/kT} = \sum_{E} \Omega(N,V,E) e^{-E/kT}$ sum over assembly states sum over assembly energy levels

$$P(E) = \sum_{j \in \{E_j = E\}} P_j = \sum_{j \in \{E_j = E\}} e^{-E_j/kT} / Q(N, V, T)$$

sum over those assembly states with $E_{j} = E$

$$P(E) = \frac{\Omega(N, V, E)e^{-E/kT}}{Q(N, V, T)}$$