Федеральное государственное бюджетное образовательное учреждение высшего образования

Московский государственный университет имени М.В. Ломоносова Химический факультет

УТВЕРЖДАЮ

И.о. декана химического факультета, Чл.-корр. РАН, профессор

/С.Н. Калмыков/

«30» августа 2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) СПЕЦПРАКТИКУМ

Уровень высшего образования:

Магистратура

Направление подготовки (специальность):

04.04.01 Химия

Направленность (профиль) ОПОП:

Радиохимия

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №3 от 13.05.2019)

Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки 04.04.01 «Химия» (программа магистратуры) в редакции приказа МГУ от 30 августа 2019 г., №1033.

Год (годы) приема на обучение 2019/2020, 2020/2021

- 1. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок В-ПД
- 2. Планируемые результаты обучения по практике, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников). Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП (в форме компетенция индикатор достижения ЗУВ) указано в Общей характеристике ОПОП.

Формируемые компетенции	Индикаторы достижения	Планируемые результаты обучения по
ОПК-1.М Способен выполнять комплексные экспериментальные и расчетно-теоретические исследования в избранной области химии или смежных наук с использованием современного научного оборудования, программного обеспечения и баз данных профессионального назначения	ОПК-1.М.2 Проводит экспериментальные и (или) расчетно-теоретические работы в области химии, соответствующей профилю магистерской программы, с использованием современного научного оборудования и программного обеспечения	дисциплине (модулю) Уметь: работать с закрытыми и открытыми источниками ионизирующего излучения Владеть: навыками работы на стандартном оборудовании радиохимической лаборатории при решении учебных задач
СПК-2.М: Способен выбирать методы регистрации ионизирующих излучений и правильно использовать современные спектрометрические и радиометрические приборы для проведения радионуклидной диагностики веществ и физико-химических процессов	СПК-2.М.2 Грамотно проводит эксперимент по регистрации радиоактивности веществ и материалов	Знать: теоретические основы взаимодействия ионизирующих излучений с веществом, используемые для их регистрации. Владеть: методическими приемами и навыками регистрации ионизирующих излучений
	СПК-2.М.3 Корректно обрабатывает и грамотно интерпретирует результаты измерения радиоактивности	<u>Уметь</u> : интерпретировать результаты измерения радиоактивности.
СПК-3.М: Способен оценивать опасность ионизирующих излучений для человека и окружающей среды при постановке работ, применять на практике основные нормы и правила радиационной безопасности, владеть навыками работы с закрытыми и	СПК-3.М.1 Корректно рассчитывает оценивает дозы облучения и оценивает риски	Знать: теоретические основы взаимодействия ионизирующих излучений с веществом, приводящие к созданию дозы облучения. Знать: влияние ионизирующих излучений на живые организмы при различных дозах

открытыми источниками ионизирующего		облучения.
излучения	СПК-3.М.2 Выполняет требования	Уметь : применять на практике основные
	радиационной безопасности при	нормы и правила радиационной
	работе с закрытыми и открытыми	безопасности
	источниками ионизирующего	Владеть : навыками безопасной работы с
	излучения	закрытыми и открытыми источниками
		ионизирующего излучения

- 3. Объем дисциплины (модуля) составляет **8** зачетные единицы, всего **288** часов, из которых **227** часа составляет контактная работа студента с преподавателем (**209** часов практические работы, 12 часов индивидуальные консультации, **6** часов проведение промежуточной аттестации), **61** час составляет самостоятельная работа учащегося.
- 7. Входные требования для освоения модуля, предварительные условия.

Для полноценного усвоения данного образовательного модуля необходимо:

- **знать** основные естественнонаучные дисциплины в рамках образовательной программы бакалавра и специализированные дисциплины в рамках образовательной программы магистра; изучение дисциплин данного модуля опирается, главным образом, на теоретических знаниях и практических навыках в области радиохимии, а также неорганической, аналитической, органической и физической химии;
- уметь пользоваться химической литературой и современными интернет-ресурсами;
- владеть базовыми навыками работы в химической лаборатории.
- 8. Аннотация содержания дисциплины (модуля)

Наименование и краткое	Bcero (3.e. /	В том числе								
содержание разделов и тем дисциплины (модуля), форма промежуточной аттестации по дисциплине	Контактная работа (работа во взаимодействии с преподавателем), часы из них					Самостоятельная работа обучающегося, часы из них				
(модулю)		Занятия лекционного типа	Занятия семинарского типа, в т.ч., лабораторные и практические работы	Групповые консультации	Индивидуальные консультации	Учебные занятия, направленные на проведение текущего контроля успеваемости коллоквиумы, практические контрольные занятия* и	Bcero	Выполнение домашних заданий	Подготовка к контрольным работам	Bcero
Раздел 1. Методы регистрации ионизирующих излучений.	100		72		4		76	24		24
Раздел 2. Дозиметрия ионизирующих излучений.	82		65		4		69	13		13
Раздел 3. Применение радионуклидов и меченых соединений.	100		72		4		76	24		24
Промежуточная аттестация - зачет	6					6	6			

|--|

Содержание разделов дисциплины

Раздел 1. Методы регистрации ионизирующих излучений.

Методы регистрации гамма-излучения

Методы регистрации бета-излучения

Методы регистрации альфа-излучения

Авторадиография

Счетчик Гейгера-Мюллера

Альфа- бета-радиометр

Сцинтилляционный гамма-спектрометр

Полупроводниковый гамма-спектрометр

Жидкостной сцинтилляционный спектрометр

Система цифровой авторадиографии

Раздел 2. Дозиметрия ионизирующих излучений.

Доза. Дозы от различных типов излучений. Дозы, характеризующие низкие уровни облучения персонала и населения.

Нормы радиационной безопасности и правила работы в радиохимической лаборатории

Защита от ионизирующего излучения

Дозиметрия гамма-излучения

Определение загрязнения поверхностей

Определение концентрации дочерних продуктов распада радона в воздухе

Раздел 3. Применение радионуклидов и меченых соединений.

Приготовление препаратов для измерения радиоактивности

Экстракционные методы разделения радионуклидов и меченых соединений

Хроматографические методы разделения радионуклидов и меченых соединений

Изотопные генераторы

Применение радионуклидов в аналитической химии

Применение радионуклидов в физической химии

Применение радионуклидов в материаловедении

Применение радионуклидов для исследования биохимических процессов Методы выделения и концентрирования радионуклидов, содержащихся в природных объектах

6. Самостоятельное изучение разделов дисциплин

Самостоятельная работа студентов состоит в подготовке к занятиям в практикуме путем изучения теоретических разделов и описания лабораторных работ, в оформлении лабораторного журнала, в проведении расчетов и написании отчетов по выполненным задачам, а также в подготовке к зачету.

Примерный перечень видов работ, проводимых самостоятельно:

- Подготовка к занятиям в практикуме путем изучения теоретических разделов и описания лабораторных работ, оформление лабораторного журнала, проведение расчетов и написание отчетов по выполненным задачам по теме: *Методы регистрации ионизирующих излучений*.
- Подготовка к занятиям в практикуме путем изучения теоретических разделов и описания лабораторных работ, оформление лабораторного журнала, проведение расчетов и написание отчетов по выполненным задачам по теме: Дозиметрия ионизирующих излучений.
- Подготовка к занятиям в практикуме путем изучения теоретических разделов и описания лабораторных работ, оформление лабораторного журнала, проведение расчетов и написание отчетов по выполненным задачам по теме: *Применение радионуклидов и меченых соединений*.
 - Подготовка к зачету.

7. Образовательные технологии:

- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ;
- -применение компьютерных симуляторов, обработка данных на компьютерах;
- -использование средств дистанционного сопровождения учебного процесса.

8. Ресурсное обеспечение:

Со всех компьютеров МГУ организован доступ к полным текстам научных журналов и книг на русском и иностранных языках. Доступ открыт по IP-адресам, логин и пароль не требуются: http://nbmgu.ru/

Основная литература

- 1. Чернышева М.Г., Бадун Г.А. Меченые соединения в физико-химических и биохимических исследованиях. Лекции и практикум. М.: изд-во Московского университета, 2018, 56 с.
- 2. Учебное пособие «Основы радиохимии и радиоэкологии. Практикум». Под ред. М.И. Афанасова. М.: Принт-Ателье. 2016. 114 с.
- 3. Руководство к практическим занятиям по физическим основам радиохимии. Под ред. Ан.Н.Несмеянова. М.: Химия, 1971.
- 4. В.Б. Лукьянов, С.С. Бердоносов, И.О. Богатырев, К.Б. Заборенко, Б.З. Иофа. Радиоактивные индикаторы в химии. Проведение эксперимента и обработка результатов. М.: Высшая школа, 1977, 280 с.
- 5. Лысенко Н.П., Пак В.В., Рогожина Л.В. и др. Практикум по радиобиологии: Учеб. пособие. М.: КолосС, 2007. 399 с.

Дополнительная литература

- 1. Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ 99/2010)
- 2. Нормы радиационной безопасности (НРБ -99/2009)
- 3. Иванов В.И. Курс дозиметрии. 4-изд., перераб. и доп. М.: Энергоатомиздат, 1988. 400 с.
- 4. Lowenthal G.C., Airey P. L. Practical applications of radioactivityand nuclear radiations. An introductory text for engineers, scientists, teachers and students. Cambridge University Press. 2004. 337 p.
- 5. Радиобиология инкорпорированных радионуклидов. Под ред. В.С. Калистратовой. Издательство ФМБЦ им. А.И. Бурназяна ФМБА России, 2012. 464 с.
- 6. Кашковский В.В. Специальный физический практикум. Томск: Изд-во Томского политехнического университете, 2010. 404 с.

Периодическая литература

- 1. Радиохимия
- 2. Radiochimica Acta,
- 3. Journal of Radioanalytical and Nuclear Chemistry.
- 4. Russian Journal of Inorganic Chemistry
- 5. Journal of Labelled Compounds and Radiopharmaceuticals,
- 6. Journal of Environmental Radioactivity
- 7. Mendeleev Communications
- 8. Успехи химии
- 9. Вестн. Моск. у-та. Сер. 2. Химия.
- 10. ДАН
- 11. Nature
- 12. Science

Интернет-ресурсы

- 1. Доступ к основным мировым on-line библиотекам и базам данных ссылок и рефератов (Web of Science и другие)
- 2. Доступ к on-line ресурсам и журналам издательства Elsevier, Springer и других.
- 3. Сайт кафедры радиохимии

Материально-техническое обеспечение: лабораторные и офисные помещения кафедры радиохимии

Лабораторные помещения оснащены специальной химически стойкой лабораторной мебелью, вытяжными шкафами, раковинами, лабораторной посудой и следующим оборудованием:

Альфа-бета радиометр УМФ-2000 - 4 шт.; Установка «Бета» - 8 шт.; Блок питания БВ – 22 - 5 шт.; Домик свинцовый - 1 шт. Гамма-сцинтилляционная установка AtomSpectra 2 - 6 шт.; с компьютерным управлением Гамма-сцинтилляционная установка AtomSpectra 1 - 1 шт.; с компьютерным управлением Компьютеры Dell с мониторами для гамма-спектрометров - 9 шт.; Датчик сцинтилляционный УСД-1 - 4 шт.; Радиометр УИМ-1М - 4 шт.; Установка контроля поверхностного радиоактивного загрязнения персонала МКС-100А «Чистотел»;

Комплекс муфельных печей с программируемыми термостатами и возможностью нагрева до 1300°C; Рентгеновский фотоэлектронный спектрометр (Kratos AXIS Ultra DLD); Просвечивающий электронный микроскоп высокого разрешения с необходимыми приставками (JEOL JEM-2100 F/Cs/GIF); Альфа-спектрометр с Si поверхностно-барьерными детекторами (Canberra Ind.); Гамма-спектрометр с детекторами из сверхчистого Ge (Canberra Ind., Inc.) – 2 шт; Жидкостно-сцинтилляционный спектрометр TriCarb-2810 (PerkinElmer); Герметичный бокс для работы в контролируемой атмосфере с различными парциальными давлениями кислорода - проведение экспериментов в бескислородных условиях с редокс-чувствительными актинидами; Иономеры с набором электродов (Mettler Toledo) - определение рН растворов; Высокоскоростная центрифуга (Allegra 64R, Beckman Coulter) - отделение коллоидных частиц от раствора при проведении сорбционных экспериментов; Встряхиватели, нагревательные плитки, сушильные шкафы, роторные испарители; Холодильники; Жидкостной хроматограф; Анализатор наночастиц в суспензии (динамическое светорассеяние и дзета-потенциал) (Malver ZETASIZER nano-ZS, Malvern) - определение дзета-потенциала коллоидных частиц.

- 9. Язык преподавания русский
- 10. Преподаватели: доцент, к.х.н. Бадун Г.А., доцент, к.х.н. Чернышева М.Г. доцент Петров В.Г., доцент Северин А.В., профессор М.И. Афанасов

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - зачета. На зачете проверяется достижение промежуточных индикаторов компетенций, перечисленных в п.2.

Текущий контроль успеваемости проводится еженедельно. Критерии формирования оценки – посещаемость занятий, уровень подготовки к лабораторным занятиям, оформление лабораторного журнала, результаты собеседования при сдаче практических работ.

Для каждого раздела предполагается зачёт в конце семестра.

Допуск к промежуточной аттестации по итогам освоения спецпрактикума осуществляется по результатам текущего контроля успеваемости студентов. К сдаче зачёта студент получает допуск, в том случае если сданы все практические задачи дисциплины.

Зачёт осуществляется в виде собеседования по результатам выполнения практических задач по темам, пройденным в рамках данного раздела.

Промежуточный контроль успеваемости (вопросы к зачету)

Раздел 1. Методы регистрации ионизирующих излучений.

Проведите сравнительный анализ методов регистрации β-излучения. Опишите процедуры пробоподготовки и проведения измерения для одного из методов.

Проведите сравнительный анализ методов регистрации γ-излучения. Опишите процедуры пробоподготовки и проведения измерения для одного из методов.

Проведите сравнительный анализ методов регистрации α-излучения. Опишите процедуры пробоподготовки и проведения измерения для одного из методов.

Исходя из спектра излучения, зарегистрированного с помощью полупроводникового гамма-спектрометра., определите радионуклидный состав пробы.

Исходя из спектра излучения, зарегистрированного с помощью жидкостного сцинтилляционного спектрометра., определите радионуклидный состав пробы.

Раздел 2. Дозиметрия ионизирующих излучений.

Опишите дозы, используемые для дозиметрии β-излучения.

Опишите дозы, используемые для дозиметрии у-излучения.

Проведите расчет защиты от излучения радионуклида с заданными параметрами (активность, тип источника, расстояние до него, продолжительность работы).

Опишите способ определения загрязнения рабочей поверхности α- и β-излучающими радионуклидами.

Раздел 3. Применение радионуклидов и меченых соединений.

Опишите экстракционный метод разделения радионуклидов, предложенных преподавателем.

Опишите хроматографический метод разделения меченных соединений, предложенных преподавателем.

Опишите методику определения растворимости соединения с помощью метода радиоактивных индикаторов.

Опишите методику подготовки крови и биологических тканей (легкие, печень, почки) для определения радиоактивности с помощью метода жидкостной сцинтилляционной спектрометрии.

Опишите методику выделения ¹³⁷Cs из природных объектов (предлагаются преподавателем из списка).

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)					
Оценка	2	3	4	5	
Результат					
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные	
	знаний		знания	систематические знания	
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое	
	умений	систематическое умение	отдельные пробелы умение	умение	
			(допускает неточности		
			непринципиального характера)		
Навыки	Отсутствие	Наличие отдельных	В целом, сформированные	Сформированные навыки,	
(владения)	навыков	навыков	навыки, но не в активной форме	применяемые при решении	
				задач	

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ
по дисциплине (модулю)	
Знать: теоретические основы взаимодействия ионизирующих излучений с веществом,	мероприятия текущего контроля
используемые для их регистрации.	успеваемости, устный опрос на зачете и
Знать: теоретические основы взаимодействия ионизирующих излучений с веществом,	при приеме работ
приводящие к созданию дозы облучения.	

Знать: влияние ионизирующих излучений на живые организмы при различных дозах облучения.	
Уметь: работать с закрытыми и открытыми источниками ионизирующего излучения Уметь: интерпретировать результаты измерения радиоактивности. Уметь: применять на практике основные нормы и правила радиационной безопасности	мероприятия текущего контроля успеваемости, устный опрос на зачете и при приеме работ
Владеть: навыками работы на стандартном оборудовании радиохимической лаборатории при решении учебных задач Владеть: методическими приемами и навыками регистрации ионизирующих излучений Владеть: навыками безопасной работы с закрытыми и открытыми источниками ионизирующего излучения	мероприятия текущего контроля успеваемости, устный опрос на зачете и при приеме работ