Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

Декан химического факультета, Акад. РАН, профессор

/В.В. Лунин/

«27» февраля 2017 г.

Blun

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Физические методы исследований в химии

Уровень высшего образования:

Специалитет

Направление подготовки (специальность):

04.05.01 Фундаментальная и прикладная химия

Направленность (профиль) ОПОП:

Физическая химия

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №1 от 27.01.2017)

Москва 2017

Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности 04.05.01 «Фундаментальная и прикладная химия» (программа специалитета), утвержденного приказом МГУ от 22 июля 2011 года № 729 (в редакции приказов МГУ от 22 ноября 2011 года № 1066, от 21 декабря 2011 года № 1228, от 30 декабря 2011 года № 1289, от 27 апреля 2012 года № 303, от 30 декабря 2016 года № 1671).

Год (годы) приема на обучение 2014/2015, 2015/2016, 2016/2017, 2017/2018, 2018/2019

- 1. Наименование дисциплины (модуля) Физические методы исследований в химии
- 2. Уровень высшего образования специалитет.
- 3. Направление подготовки: 04.05.01 Фундаментальная и прикладная химия.
- 4. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.
- 5. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Компетенция	Планируемые результаты обучения по дисциплине (модулю)
ОПК-1.С. Способность решать современные проблемы фундаментальной и прикладной химии, используя	Уметь анализировать научную литературу с целью выбора направления и методов, применяемых в исследовании по теме выпускной квалификационной работы, Уметь: самостоятельно составлять план исследования
методологию научного подхода и систему фундаментальных химических понятий и законов	Владеть навыками поиска, критического анализа, обобщения и систематизации научной информации, постановки целей исследования и выбора оптимальных путей и методов их достижения
СПК-1.С. Способность использовать теоретические основы современных физико-химических методов исследования и анализа систем различной природы при решении практических задач	Знать: теоретические основы современных методов исследования структуры и свойств веществ Уметь: выбирать направление экспериментального физико-химического исследования, адекватное поставленной задаче Уметь: оценить возможные источники ошибок при изучении систем различной природы с помощью инструментальных методов физической химии (молекулярная спектроскопия, термический анализ, микроскопия высокого разрешения, методы анализа поверхности и пр.) Уметь: применить теоретические основы современных физико-химических методов при анализе и представлении материала научного сообщения на заданную тему Владеть: навыками статистической обработки данных физико-химического эксперимента
СПК-2.С. Способность проводить экспериментальные исследования в избранной области физической химии (кинетика и катализ, химическая термодинамика, молекулярная спектроскопия, химия поверхности)	Уметь: готовить образцы для физико-химических исследований в соответствии с поставленной задачей и с учетом специфики изучаемых объектов Уметь: грамотно спланировать физико-химический эксперимент Владеть: навыками проведения экспериментальных исследований в области физической химии

СПК-3.С. Способность использовать	Владеть: навыками работы на современном научном оборудовании для определения						
серийные и оригинальные установки	физико-химических свойств веществ						
(приборы, комплексы) для определения							
физико-химических свойств веществ							
СПК-4.С. Способность использовать	Знать: возможности и ограничения расчетных методов квантовой химии при решении						
физические и математические модели с	практических задач						
учетом их возможностей и	Владеть: навыками использования программных средств и работы в компьютерных						
ограничений при обработке и	сетях, использования ресурсов интернета; основными методами, способами и средствами						
интерпретации экспериментальных	получения, хранения, переработки информации при решении физико-химических задач						
данных в избранной области физической							
химии							
СПК-5.С. Способность проводить	Уметь: использовать программные продукты для выполнения стандартных						
квантовохимические, термодинамические	квантовохимических, термодинамических и кинетических расчетов						
и кинетические расчеты с использованием	Владеть: навыками использования профессиональных баз данных для получения						
современных программных комплексов и	информации, необходимой для физико-химического моделирования систем разной						
баз данных	природы						

6. Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины (модуля) составляет 4 зачетных единицы, всего 144 часа, из которых 80 часов составляет контактная работа студента с преподавателем (36 часов занятия лекционного типа, 36 часа – занятия семинарского типа, 4 часа – групповые консультации, 4 часа – промежуточный контроль успеваемости), 64 часа составляет самостоятельная работа студента.

7. Входные требования для освоения дисциплины (модуля), предварительные условия.

Обучающийся должен:

знать: основные этапы развития физической химии, важнейшие физические методы

уметь: вести дискуссию по вопросам истории и методологии науки вообще и физической химии в частности; применять информационные и компьютерные технологии при поиске информации

владеть: Навыками использования базовых знаний дисциплин физико-математического цикла при решении проблем физической химии, в том числе с привлечением информационных баз данных.

8. Содержание дисциплины (модуля), структурированное по темам

Наименование и краткое	Всего	В том числе
------------------------	-------	-------------

содержание разделов и тем дисциплины (модуля), форма промежуточной	(часы)	Кон	Контактная работа (работа во взаимодействии с преподавателем), часы из них							Самостоятельная работа обучающегося, часы из них		
аттестации по дисциплине (модулю)		Занятия лекционного типа	Занятия семинарского типа	Групповые консультации	Индивидуальные консультации	Учебные занятия, направленны е на проведение текущего контроля успеваемост и, промежуточ ной аттестации	Bcero	Выполнение домашних заданий	Подготовка рефератов и т.п	Bcero		
Тема 1. Физические модели атомов и молекул. Методы определения физических свойств. Физическая теория метода. Общая характеристика и классификация методов. Спектроскопические, дифракционные, электрические и магнитные методы. Чувствительность и разрешающая способность метода. Характеристическое время метода.	6	2	2				4			2		

Интеграция методов.							
Тема 2. Методы определения физических свойств веществ и материалов. Общая характеристика и классификация методов. Энергетические характеристики методов. Зависимость частоты перехода краев поглощения или линий испускания от величины порядкового номера элемента (закон Мозли).	6	2	2		4		2
Тема 3. Методы масс- спектрометрии. Методы ионизации: электронный удар, фотоионизация, электростатическое неоднородное поле, химическая ионизация. Комбинированные методы. Ионный ток и сечение ионизации. Потенциалы появления ионов. Вертикальные и адиабатические электронные переходы. Диссипативная ионизация. Типы ионов в масс-спектрометрах. Применение масс-спектрометрии.	4	1	1		2		2
Тема 4. Корреляция между молекулярной структурой и масс-спектрами. Измерение потенциалов появления ионов и	4	1	1		2		2

определение потенциалов ионизации и энергии разрыва связей. Идентификация вещества. Роль разрешения, потенциалов появления, методов ионизации, метастабильных ионов. Таблицы массовых чисел.							
Тема 5. Методы определения электрических дипольных моментов молекул. Взаимодействие полярной молекулы с электростатическим полем. Ориентационная поляризация и ее связь с диэлектрической проницаемостью и дипольным моментом молекул; классический и квантовомеханический подходы к выводу уравнения Дебая для линейной молекулы или жесткого диполя. Эффект Штарка. Определение дипольного момента в газах (первый метод Дебая) и растворах (второй метод Дебая).	4	1	1		2		2
Тема 6. ЯМР Понятие ядерного магнитного резонанса, условия ядерного магнитного резонанса, схема эксперимента, реализация условий ядерного магнитного резонанса, экранирование ядер электронами, химические сдвиги	3	1	1		2		1

ядер ЯМР, примеры спектров ЯМР. Недостатки и преимущества метода.								
Тема 7. Рентгеноструктурный анализ. Рентгеновские методы исследования. Природа рентгеновских спектров. Края поглощения. Взаимосвязь рентгеновских спектров поглощения и характеристических спектров испускания. Закон Брэгга — Вульфа.	3	1	1			2		1
Тема 8. Метод газовой электронографии. Уравнения потока электронов для плоских и сферических волн. Рассеяние электронов жесткой молекулой. Введение функции распределения межъядерных расстояний. Преобразование Фурье в газовой электронографии. Кривая радиального распределения. Рассеяние электронов двухатомной молекулой в гармоническом приближении колебания ядер. Зависимость амплитуды колебания пар ядер от температуры. Уравнения для многоатомных молекул. Схема эксперимента. Условия получения электронограмм.	8	2	2	2		6		2

Тема 9 Методы вращательной спектроскопии. Схема радиоспектрометра. Условия получения микроволнового спектра полярных молекул. Область частот. Матричный залемент дипольного момента перехода для полярных молекул. Типы спектров. Правила отбора. Использование фурьеспектрометров для исследования ван-дер-ваальсовых молекул и малостабильных молекул. Возможности обнаружения молекул в межзвездной среде. Определение дипольного момента молекул из микроволновых спектров. Определение геометрических параметров молекул из микроволновых спектров. Метод изотопного замещения. Спектроскопия комбинационного рассениия (КР). Стоксовы и антистоксовы линии КР. Сравнение характеристик метода при двух способах возбуждения спектров КР.	Совместное использование газовой электронографии и микроволновой спектроскопии.							
(ламповое и лазерное).	спектроскопии. Условия получения микроволнового спектра полярных молекул. Область частот. Матричный элемент дипольного момента перехода для полярных молекул. Типы спектров. Правила отбора. Использование Фурьеспектрометров для исследования ван-дер-ваальсовых молекул и малостабильных молекул. Возможности обнаружения молекул в межзвездной среде. Определение дипольного момента молекул из микроволновых спектров. Определение геометрических параметров молекул из микроволновых спектров. Истоксовы и антистоксовы линии КР. Сравнение характеристик метода при двух способах возбуждения спектров КР.	16	7	7		14		2

Определение геометрических параметров неполярных молекул.							
Тема 10. Термические методы анализа Конструкция пирометра Н.С. Курнакова и его эволюция. Простой и дифференциальный термоанализ. Виды термических кривых. Факторы, влияющие на вид термограмм. Термогравиметрия. Дифференциальная сканирующая калориметрия. Термомеханический анализ, дилатометрия и динамический-механический анализ.	6	2	2		4		2
Тема 11. Основы спектральных методов исследования Спектральные методы анализа: классификация. Основные понятия геометрической, квантовой и волновой оптики. Природа электромагнитного излучения и его характеристики. Процессы, протекающие при взаимодействии излучения с веществом. Происхождение атомных и молекулярных спектров. Спектры поглощения и пропускания, комбинационного рассеяния. Основные виды	6	2	2		4		2

	1						
спектральных измерений. Устройство спектральных приборов: источники возбуждения спектров, диспергирующие элементы, детекторы. Преимущества и недостатки пламенного возбуждения, искры переменного и постоянного тока, дуговой и лазерной атомизации, ИСП, тлеющего разряда. Схемы и характеристики монохроматоров Роланда, Черни-Тернера и Эшелле. Типы детекторов излучения. Механизмы передачи и обработки информации. Типы шумов, причины их появления, методы подавления.							
Тема 12. Методы атомной спектроскопии Атомная эмиссионная и абсорбционная спектроскопия. Принципы коррекции фона и выбора базовой линии. Механизмы атомизации пробы и возбуждения спектра. Устройство атомно-абсорбционный спектрометров. Принципы коррекции фона. Пламенная фотометрия. Аппаратурное оформление эксперимента в атомно-эмиссионной спектроскопии. Выбор базовой	6	2	2		4		2

линии и референсного сигнала. Спектральный микроанализ. Особенности лазерной спектроскопии и тлеющего разряда. Требования к образцам. Фотодиодные и ПЗС детекторы. Точечные, линейные и матричные детекторы. Интерпретация атомных спектров.							
Тема 13. Методы колебательной спектроскопии Основные понятия об ИК- и КР- спектроскопии. Колебательные функции двухатомной молекулы. Уровни энергии молекул, их классификация. Прямая и обратная колебательные задачи. Фундаментальные, обертонные и составные частоты, переходы в молекулах. Правила отбора и интенсивность переходов в ИК и КР спектрах. Симметрия нормальных колебаний. Резонанс Ферми. Техника проведения эксперимента. Стоксовы и антистоксовы линии в спектрах КР. Источники излучения, интерферометры, детекторы. Фурье-преобразование в ИК-спектроскопии. Сопоставление и интерпретация ИК- и КР-спектров. Алгоритм ab-initio	8	3	3		6		2

квантовохимических расчетов геометрии молекул, их колебательных спектров и термодинамических характеристик. Вращательная структура полос поглощения. Типы колебаний. Изотопные эффекты. Количественный анализ и исследование равновесий. Количественный анализ. Особенности регистрации и интерпретации спектров							
зеркального и диффузного отражения, НПВО, твердых и газообразных образцов. Материалы для зеркал и окон в ИК спектроскопии. Многоходовые кюветы. ИК и КР микроскопия.							
Тема 14. Спектрофотометрия Происхождение спектров поглощения. Принцип Франка-Кондона. Спектроскопия в УФ и видимой областях: аппаратурное оформление эксперимента. Закон Бургера-Ламберта-Бера и отклонения от него. Влияние растворителя. Особенности регистрации спектров рассеивающих образцов. Закономерности при регистрации спектров полиароматических соединений. Комплексы с	8	3	3		6		2

				1	1			
переносом заряда. Зависимость поглощения от окружения центрального атома в комплексных соединениях. Спектры биологически активных молекул. Виды спектрофотометрии: особенности регистрации и обработки данных. Проблемы светосбора. Волоконная оптика в спектроскопии. Диффузное отражение. Турбидиметрия.								
Тема 15. Спектрофлуориметрия Люминесцентная спектроскопия. Виды излучательных и безызлучательных переходов. Механизм формирования спектров люминесценции. Диаграмма Яблонского. Правило Левшина, закон Стокса-Ломмеля, Стоксов сдвиг. Типы люминесценции. Особенности люминесценции твердых образцов и наночастиц. Тушение люминесценции. Устройство спектрофлуориметров. Применение люминесцентных методов для анализа биологических объектов. Люминофоры и их применение в приборостроении и аналитической химии.	6	2	2			4		2

Тема 16. Рентгеновские методы исследования. Природа рентгеновских спектров. Край полосы поглощения. Взаимосвязь рентгеновских спектров поглощения и характеристических спектров испускания. Закон Мозли. Классификация рентгеновских методов исследования. Рентгеноспектральный анализ: рентгенофлуоресцентный. Энергетическая и волновая дисперсии в рентгеновская спектроскопия поглощения: XANES, EXAFS — спектроскопия и РФЭС (ЭСХА).	6	2	2			4		2
Тема 17. Методы электронной микроскопии. Электронная микроскопия: просвечивающая, просвечивающая высокого разрешения, сканирующая. Электронозондовый микроанализ. Взаимодействие электронов с веществом. Формирование электронного пучка: понятие о магнитных и электростатических линзах. Устройство электронных	8	2	2	2		6		2

микроскопов. Детекторы в электронной микроскопии. Основы электронной дифракции. Спектроскопия энергетических потерь электронов. Особенности пробоподготовки в СЭМ и ПЭМ.								
Промежуточная аттестация экзамен	36				4	4		32
Итого	144	36	36	4	4	80		64

9. Образовательные технологии:

- -применение компьютерных симуляторов, обработка данных на компьютерах, использование компьютерных программ, управляющих приборами;
- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.

10. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

По каждой теме указывается материал в источниках из списков основной и дополнительной литературы, а также из интернет ресурсов.

11. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Основная литература

- 1. Вилков Л.В., Пентин Ю.А., Физические методы исследования в химии, Москва: Мир, 2006, 683 с.
- 2. Молекулярные структуры: Прецизионные методы исследования. / Под ред. А. Доменикано и И. Харгиттаи. М.: Мир. 1997. 671 с.

Дополнительная литература

1. Цирельсон В.Г. Квантовая химия: молекулы, молекулярные системы и твердые тела, Москва: Бином, 2010, 495 с.

- 2. Современная масс-спектрометрия/ В.А. Иоутси, В.Ю. Марков, С.А. Соколов. М.: МДМ Принт. 2015. 127 с.
- 3. Фуллерены: Учебное пособие/ Л.Н. Сидоров, М.А. Юровская и др. М.: Издательство «Экзамен», 2005. 688 с.
- 4. Еремин В.В., Дроздов А.А. Нанохимия и нанотехнология //М., Дрофа, 2009.
- 5. Сергеев Г.Б.. Нанохимия / М., Книжный дом "Университет", 2003.
- 6. Нанотехнология в ближайшем десятилетии / под ред. М.К. Роко, М., Мир, 2002.
- 7. Бухтияров В.И., Слинько М.Г. Металлические наносистемы в катализе //Успехи химии, 70 (2001) 167.
- 8. Murzin D. Nanocatalysis / Research Signpost, 2006.
- 9. Владимир Федорович Лугинин. 1834–1911/ Е.А. Зайцева (Баум), Г.И. Любина. М.: Издательство Московского Университета. 2012. 688 с.

Периодические издания

- 1. Vogt, J., **Vogt, N.** MOGADOC A versatile database for molecular spectroscopists and structural chemists// Asian J. Spectrosc., Special Issue, 2010, 67-73.
- 2. Vogt, J., **Vogt, N.**, Schunk, A. Databases in inorganic chemistry. In: Handbook of Chemoinformatics From Data to Knowledge. Gasteiger, J. (Ed.) Weinheim: Wiley-VCH. 2003, **2**, 629-643.

Интерет-ресурсы

- 1. Компьютерная база данных MOGADOC: http://www.uni-ulm.de/strudo/mogadoc/
- 2. База данных NIST http://www.nist.gov
- 3. Vishnevskiy YV (2009) UNEX: United Nuclear Experients. http://molstruct.chemport.ru/mykced_en.html, 2009

12. Язык преподавания - русский

13. Преподаватели:

- 1. в.н.с., д.х.н. Шишков Игорь Федорович, кафедра физической химии химического факультета МГУ, <u>ifshishkov@phys.chem.msu.ru</u>, 8-495-939-13-08
- 2. в.н.с., д.х.н. Савилов Сергей Вячеславович, кафедра физической химии химического факультета МГУ <u>savilov@chem.msu.ru</u>
- 3. профессор, д.х.н. Фогт Наталья Юрьевна, кафедра неорганической химии химического факультета МГУ, <u>natalja.vogt@uni-ulm.de</u> 8-495-939-13-08,

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - экзамена. На экзамене проверяется достижение промежуточных индикаторов компетенций, перечисленных в п.5.

Вопросы для экзамена:

- 1. Прикладные проблемы, решаемые средствами физической химии.
- 2. Общая схема установок для методов ЭГ, ЯМР, масс-спектрометрии, РСА, МВ
 - а) требования к исследуемому веществу в этих методах
 - б) основные уравнения, используемые в этих методах
 - в) преимущества и недостатки перечисленных методов
- 3. Этапы развития химической кинетики, термохимии, термодинамики.
- 4. Современные направления исследований термической лаборатории им. В.Ф. Лугинина.
- 5. Чем химическая термодинамика отличается от других направлений и областей применения термодинамики?
- 6. Приведите примеры известных вам фазовых диаграмм и возможных методов их построения. Как связаны эти диаграммы с термодинамическими свойствами составляющих их веществ?
- 7. В чем заключается различие между термодинамически нестабильными и метастабильными состояниями веществ? Поясните, почему в термодинамических справочниках нет данных о давлениях насыщенного пара над стеклами.
- 8. Физико-химические методы, используемые для исследования строения наноструктур.
- 9. Понятия структура молекул, связи.
- 10. Интеграция различных методов в определении параметров молекул.
- 11. Какие базы данных используются в химической науке.
- 12. Поясните, пожалуйста, причины отличия ИК-спектра поглощения 2-бутанола без растворителя и в четыреххлористом углерода.
- 13. Предложите, пожалуйста, методику расчета коэффициента диффузии толуола в полистирольную пленку. Как аппаратно можно реализовать её на практике.
- 14. Каким образом явление люминесценции используется в геологии?
- 15. Каким образом явление люминесценции используется в современной просвечивающей электронной микроскопии?
- 16. Предложите, пожалуйста, методы анализа количества фаз в порошкообразной смеси SnO2 и SnTe?
- 17. Может ли спектр люминесценции вещества быть смещен в более фиолетовую область по отношению к спектру его поглощения? Почему?
- 18. Известно, что в природе цинкит может содержать также оксидные примеси железа (II) и свинца. Образуют ли они при этом твердые растворы, или находятся в виде дискретных включений? Как это можно установить?
- 19. В чем заключается спектроскопия характеристических потерь энергии электронами. Какую информацию можно из него получить?
- 20. Известно, что ZnO может использоваться в качестве пигмента в строительных красках. Предложите, пожалуйста, методы определения содержания ZnO в водоэмульсионных белилах, где помимо него и воды присутствуют карбонат кальция, этанол, стирол-акрилатный сополимер.
- 21. Цинкит способен к люминесценции в оранжевой области. В каком диапазоне длин волн может находиться спектр его поглощения?
- 22. В чем заключается метод РФЭС? Какова область генерации спектра? Почему его, как правило, совмещают с методом ОЖЕ спектроскопии?

- 23. Опишите, пожалуйста, преимущества и недостатки полихроматора Роуланда с ФЭУ в качестве регистрирующих модулей.
- 24. Предложите схему аналитического определения примеси соли ртути в кварцевом песке всеми возможными методами оптической спектроскопии.
- 25. Каким образом с помощью термического анализа можно установить наличие в смеси с нитратом натрия медного купороса и провести определение количественного состава?
- 26. Какие типы ФЭУ Вам известны? В чем преимущества и недостатки каждого из них? Каков принцип их действия?
- 27. Предположите вид спектра атомной эмиссии металла в электрической дуге в диапазоне длин волн 200-1000 нм.
- 28. Почему в конструкции пламенных фотометров, как правило, не используются полихроматоры. Что используется для выделения диапазона длин волн в них?
- 29. Опишите, пожалуйста, преимущества и недостатки полихроматора Черни-Тернера со сменной 3-х позиционной турелью дифракционных решеток и ПЗС линейным детектором.
- 30. Предложите схему аналитического определения примеси селена в порошке свинцово-кадмиевого сплава методами оптической спектроскопии.
- 31. Каким образом с помощью термического анализа можно установить наличие в смеси с гипсом железного купороса и провести определение количественного состава?
- 32. Приведите примеры использования внутреннего и внешнего фотоэффекта в системах регистрации спектров? Каким образом может осуществляться корректировка фонового излучения/поглощения в методе оптической эмиссионной спектроскопии / абсорбционной спектроскопии

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)								
Оценка	2	3	4	5				
Результат								
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные				
	знаний		знания	систематические знания				
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое				
	умений	систематическое умение	отдельные пробелы умение	умение				
			(допускает неточности					
			непринципиального характера)					
Навыки	Отсутствие	Наличие отдельных	В целом, сформированные навыки,	Сформированные навыки,				
(владения)	навыков	навыков	но не в активной форме	применяемые при решении задач				

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ
по дисциплине (модулю)	
Знать: теоретические основы современных методов исследования структуры и свойств	мероприятия текущего контроля
веществ	успеваемости, устный опрос на
Знать: возможности и ограничения расчетных методов квантовой химии при решении	экзамене
практических задач	
Уметь анализировать научную литературу с целью выбора направления и методов,	мероприятия текущего контроля
применяемых в исследовании по теме выпускной квалификационной работы,	успеваемости, устный опрос на
Уметь: самостоятельно составлять план исследования	экзамене
Уметь: выбирать направление экспериментального физико-химического исследования,	
адекватное поставленной задаче	
Уметь: оценить возможные источники ошибок при изучении систем различной природы с	
помощью инструментальных методов физической химии (молекулярная спектроскопия,	
термический анализ, микроскопия высокого разрешения, методы анализа поверхности и пр.)	
Уметь: применить теоретические основы современных физико-химических методов при	
анализе и представлении материала научного сообщения на заданную тему	
Уметь: готовить образцы для физико-химических исследований в соответствии с поставленной	
задачей и с учетом специфики изучаемых объектов	
Уметь: грамотно спланировать физико-химический эксперимент	
Уметь: использовать программные продукты для выполнения стандартных	
квантовохимических, термодинамических и кинетических расчетов	
Владеть навыками поиска, критического анализа, обобщения и систематизации научной	мероприятия текущего контроля
информации, постановки целей исследования и выбора оптимальных путей и методов их	успеваемости, устный опрос на
достижения	экзамене
Владеть: навыками статистической обработки данных физико-химического эксперимента	
Владеть: навыками проведения экспериментальных исследований в области физической	
химии	
Владеть: навыками работы на современном научном оборудовании для определения физико-	
химических свойств веществ	
Владеть: навыками использования программных средств и работы в компьютерных сетях,	

использования ресурсов интернета; основными методами, способами и средствами получения,	
хранения, переработки информации при решении физико-химических задач	
Владеть: навыками использования профессиональных баз данных для получения информации,	
необходимой для физико-химического моделирования систем разной природы	