Методы органической химии

Курс лекций для студентов Химического факультета МГУ имени М. В. Ломоносова

Автор и лектор доктор химических наук Дядченко В. П.

Синтез борогидрида натрия

H. C. Brown:

4 NaH + B(OCH₃)₃
$$\frac{250 - 260^{\circ}\text{C}}{\text{neat}}$$
 NaBH₄ + 3 CH₃ONa (94%)

Современный способ:

$$Na_{2}B_{4}O_{7} + 16Na + 8H_{2} + 7SiO_{2} \xrightarrow{300-500^{\circ}C} \xrightarrow{3 - 5 \text{ aTM}} + 7Na_{2}SiO_{3}$$
(90%)

Обзоры по комплексным гидридам бора и алюминия

Recent Advances and Practical Applications,
ACS Symposium Series 641,
Ed. A. F. Abdel-Magid, Washington, DC, 1996.
12 обзорных статей.

Обзор Г. Брауна:

H. C. Brown, P. V. Ramachandran, "Sixty Years of Hydride Reductions" – p. 1.

Металл-гидридные восстановители

Комплексные гидриды бора

NaBH₄ борогидрид натрия

LiBH₄ борогидрид лития

Zn(BH₄)₂ борогидрид цинка Li[⊕][Et₃B-H][⊖] супергидрид

Na[⊕][H₃B-CN][⊖] цианоборогидрид натрия

Na[⊕] [(AcO)₃B-H][⊖] триацетокси- борогидрид натрия

Li[⊕][Sia₃B-H][⊖] *LS*-селектрид

Комплексные гидриды алюминия

LiAIH₄ алюмогидрид лития (*LAH*)

Li[⊕][(EtO)₃AI-H][⊖] триэтоксиалюмогидрид лития (*LTEA*)

 Li^{\oplus} [(t-BuO) $_3$ Al-H] $^{\ominus}$ три-*трет*-бутоксиалюмогидрид лития (*LTBA*) . . .

Реакционная способность комплексных гидридов

LiAlH₄ > LiBH₄ > NaBH₄

Отношение комплексных гидридов к воде

NaBH₄ реагирует очень медленно.

LiBH₄ реагирует бурно, с воспламенением.

Взаимодействие твердого LiAlH₄ с водой приводит к взрыву!

Растворимость алюмогидрида лития при 25°C

Л. Физер, М. Физер, *Реагенты для органического синтеза*, 1970, т. 2, с. 163

Растворитель	Растворимость, г/100 г растворителя		
Эфир	35		
ТГФ	13		
(C ₄ H ₉) ₂ O	2		
Диоксан	0,1		

Растворимость борогидрида натрия

Technical Bulletin, 1958, No. 550

Растворитель	Темпера- тура, °С	Раствори- мость, г/100 г растворителя	Растворитель	Темпера- тура, °С	Раствори- мость, г/100 г растворителя
Вода	0	25	ТГФ	20	0,1
Вода	60	88,5	1,2-Диметокси- этан	20	0,8
Метанол (<i>реагирует</i>)	20	16,4	Диглим	25	5,5
Этанол (реагирует медленно)	20	4,0	ДМФА	20	18

Борогидрид натрия в воде

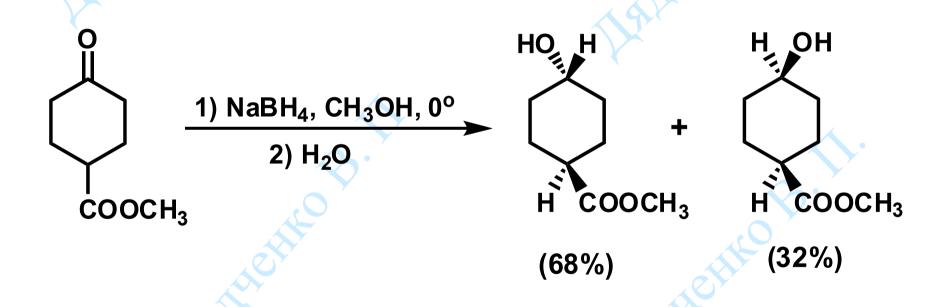
В течение 1 часа при 25°C разлагается с выделением водорода 4,5% растворенного в воде NaBH₄.

Растворимость борогидрида лития

R. F. Nystrom, S. W. Chaikin, W. G. Brown, J. Am. Chem. Soc., 1949, v. 71, p. 3245

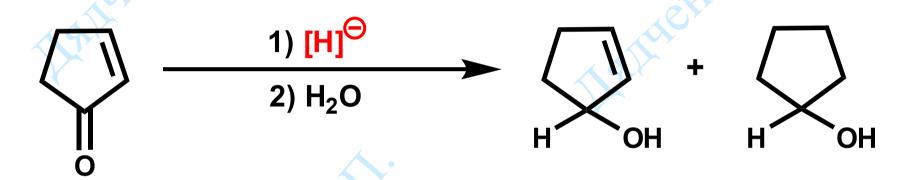
Растворитель	Растворимость, г/100 г растворителя	
ТГФ	7,7	
Эфир	1,6	

Растворители для проведения восстановления


LiAlH₄ и LiBH₄восстановление проводят в абсолютном эфире или ТГФ.

NaBH₄

восстановление проводят в этаноле или водном этаноле.


Селективное восстановление кетонной группы

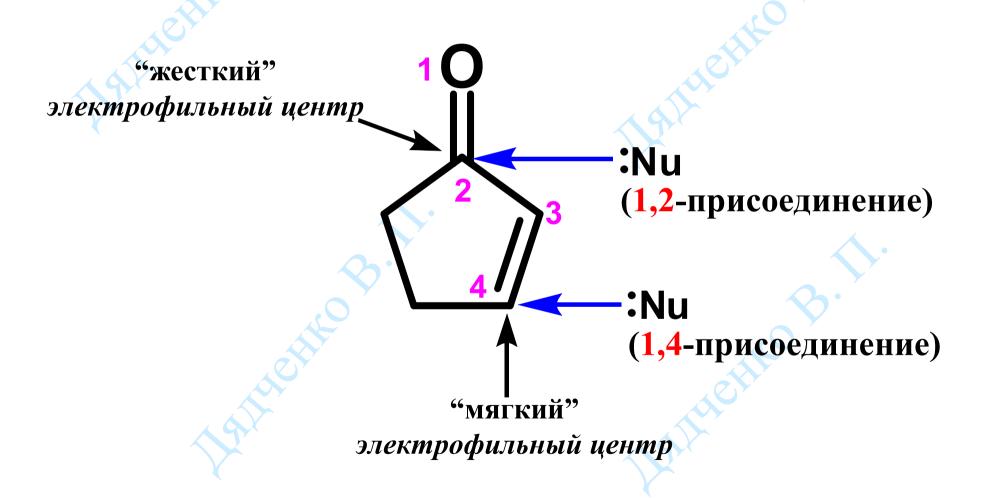
H. O. House, H. Babad, R. B. Toothill, A. W. Noltes, J. Org. Chem. 1962, v. 27, p. 4141

Восстановление а, в-непредельного кетона

H. C. Brown, H. M. Hess, J. Org. Chem., 1969, v. 34, p. 2206

Гидридный восстановитель [H][⊖]

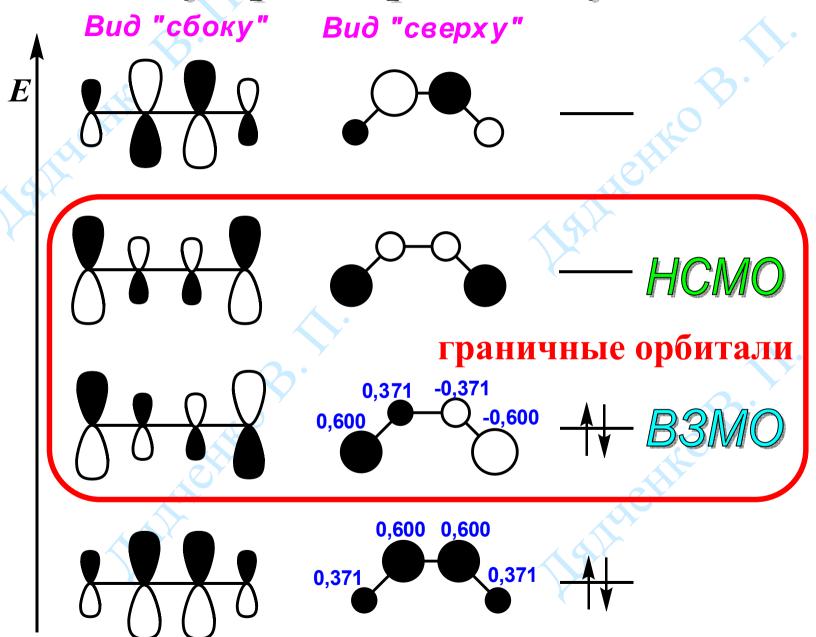
LiAlH₄, Et₂O, -10°C


NaBH₄, EtOH, 0°C

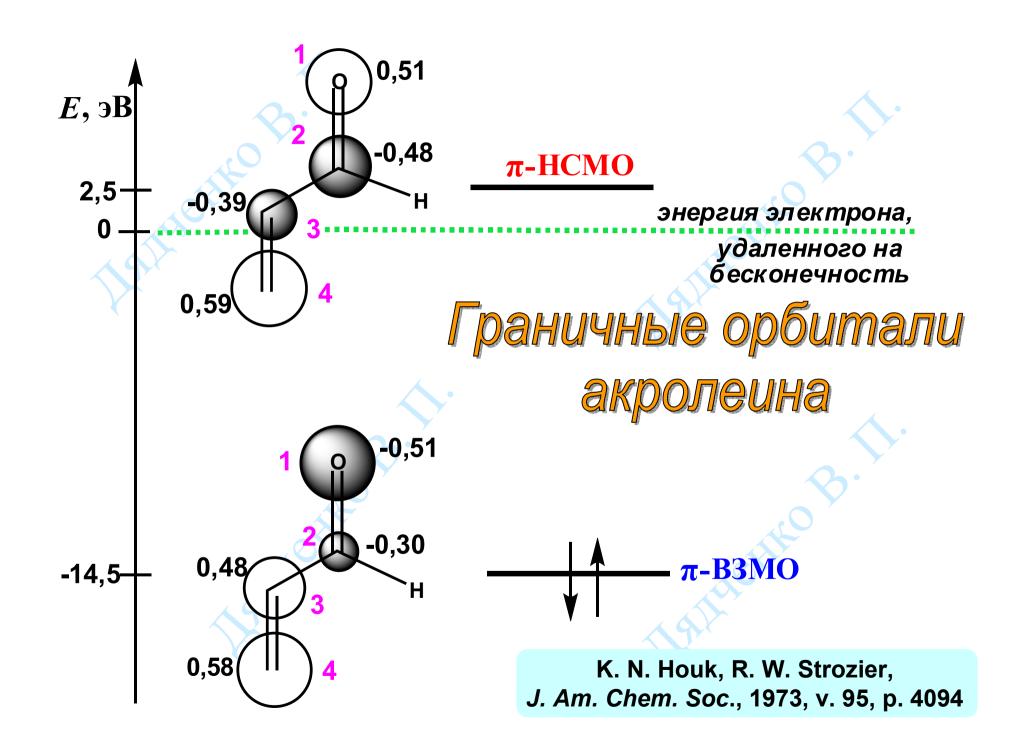
85%

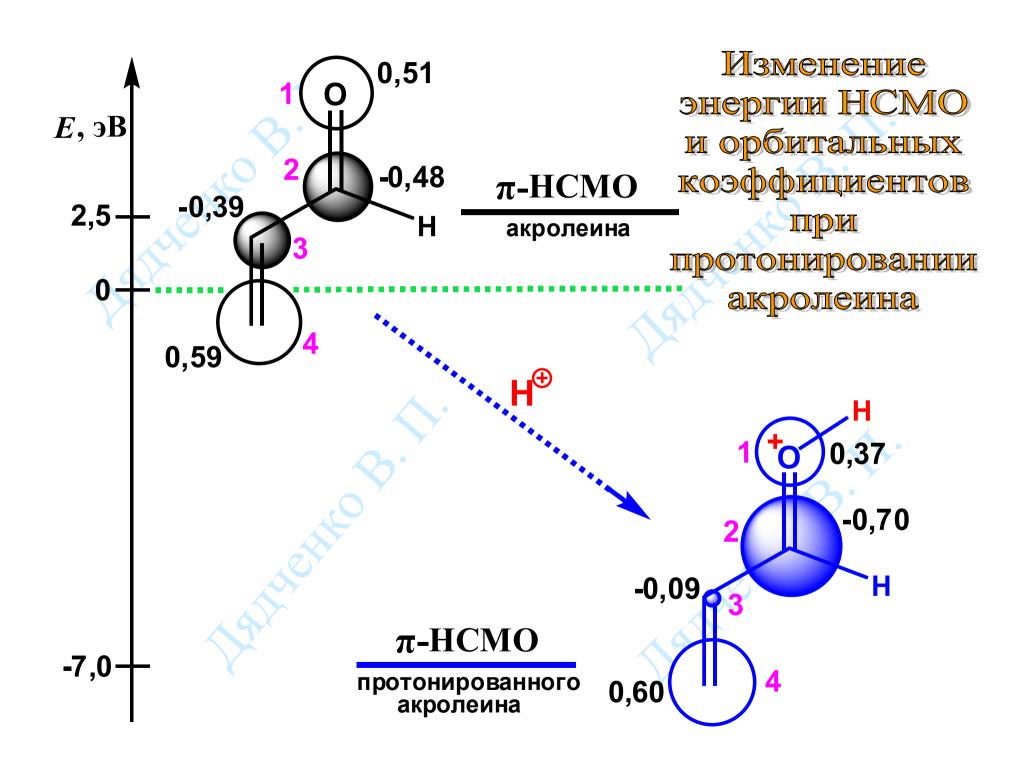
100%

15%


Жесткий и мягкий электрофильные центры

Восстановление α,β-непредельного кетона


W. R. Jackson, A. Zurqiyah, J. Chem. Soc., 1965, p. 5280


Молекулярные орбитали бутадиена

Граничные орбитали

Русскоязычная версия	Англоязычная версия	
ВЗМО	HOMO	
высшая занятая	highest occupied	
молекулярная орбиталь	molecular orbital	
HCMO	LUMO	
низшая свободная	lowest unoccupied	
молекулярная орбиталь	molecular orbital	

Восстановление непредельного кетона борогидридом цинка

E.J.Corey, N. M. Weinshenker, T. K. Schaaf, W. Huber, *J. Am. Chem, Soc.*, 1969, v. 91, p. 5675

$$H_3$$
С — C_5H_{11} - n $C_$