MCTOДЫ Органической химии

Курс лекций для студентов Химического факультета МГУ имени М. В. Ломоносова

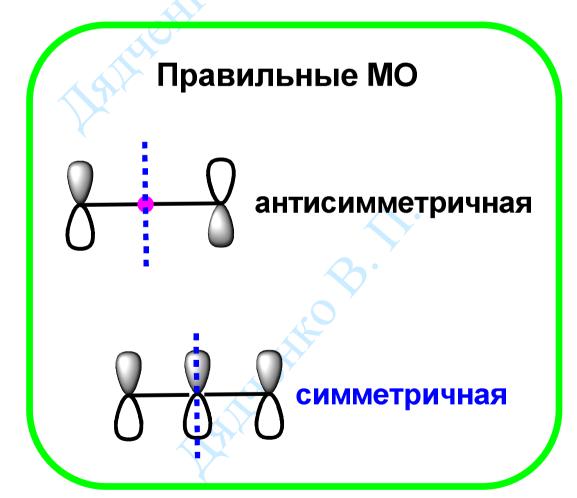
Автор и лектор доктор химических наук Дядченко В. П.

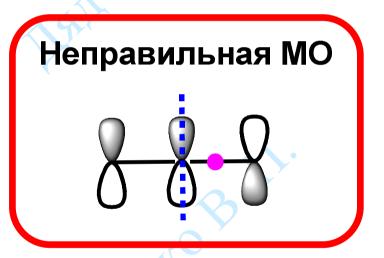
Качественное построение МО нециклических сопряженных систем

- 1. Число MO должно быть равно числу AO, взятых для их построения.
- 2. При четном числе AO все они вносят вклад в каждую MO.
- 3. При *нечетном* числе *AO все они* включаются только в самую нижнюю и в самую верхнюю по энергии *MO*.

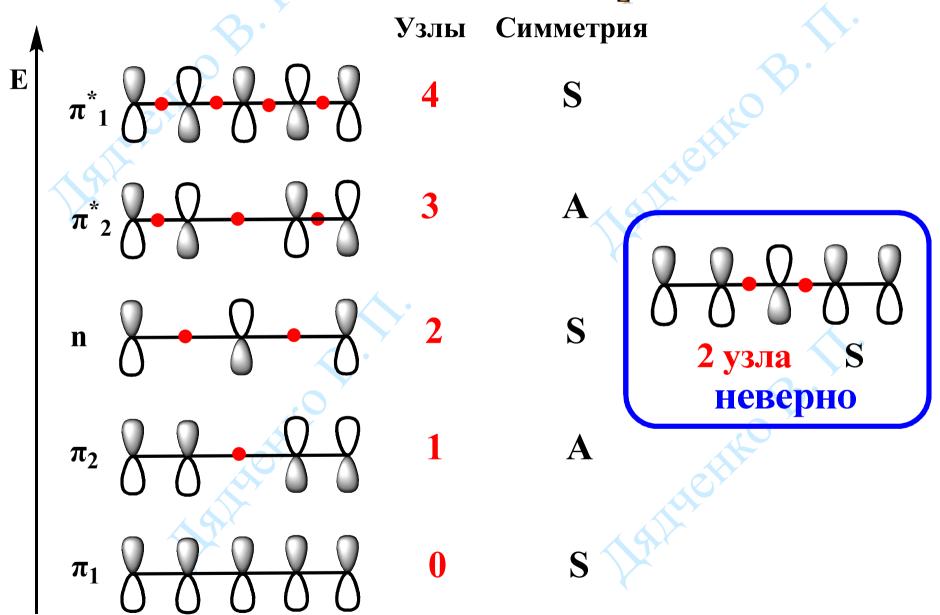
В остальных МО число АО меньше исходного их числа.

Качественное построение МО нециклических сопряженных систем

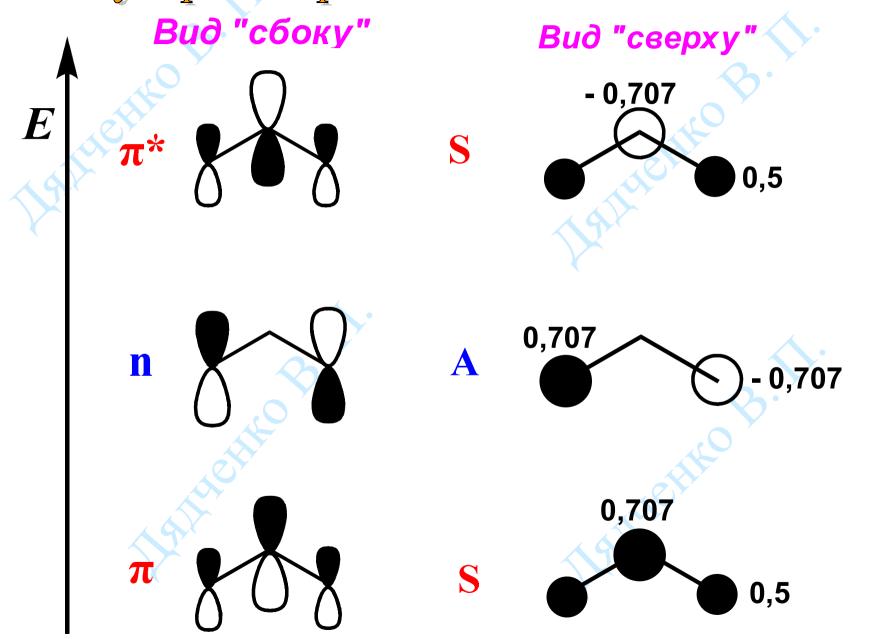

4. *МО* должны быть *либо симметричными*, *либо антисимметричными* относительно выбранного элемента симметрии молекулы.


Симметрия орбиталей чередуется: самая нижняя по энергии МО всегда симметричная, следующая по энергии — антисимметричная и так далее.

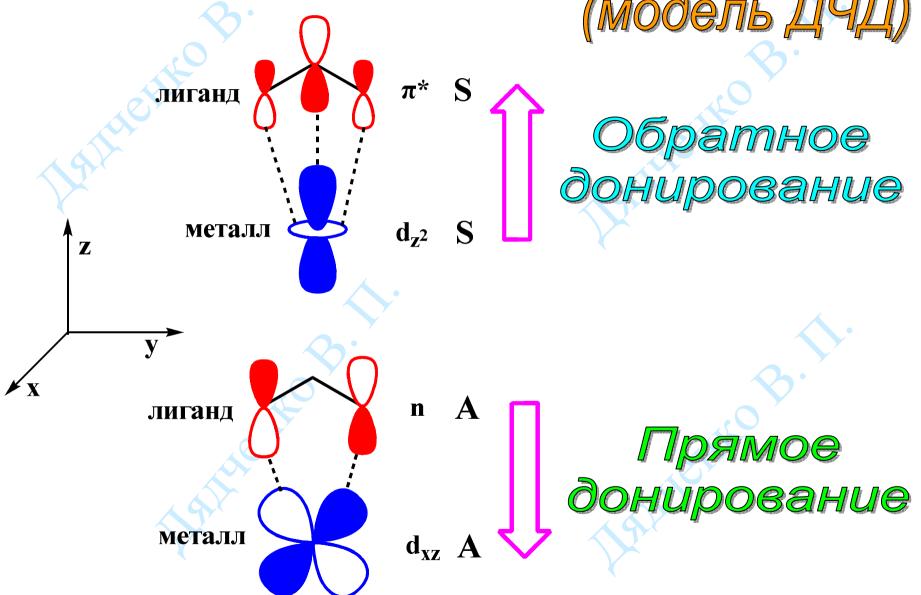
Качественное построение МО нециклических сопряженных систем

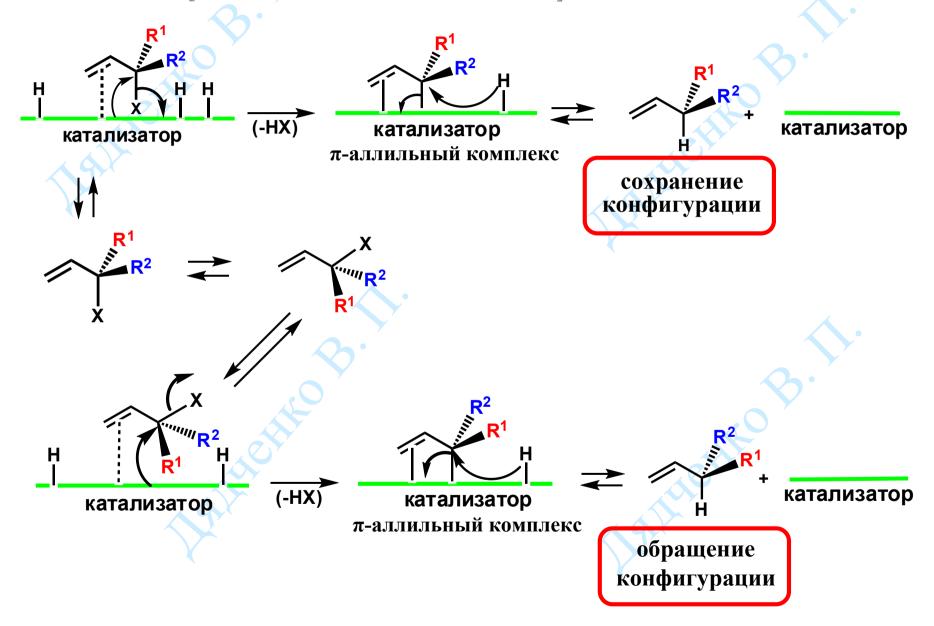

- 5. Самая нижняя по энергии *МО* не имеет узлов. Следующая за ней по энергии *МО* имеет 1 узел и так далее до n-1 узла, где n число всех *МО*.
- 6. При *нечетном* числе исходных АО четное и нечетное их число в полученных МО *чередуются* по мере возрастания энергии МО.

Молекулярные орбитали (МО) аллильной системы



МО пентадиенильного радикала




Молекулярные орбитали аллильной системы

Модель Дьюара-Чатта-Дункансона (модель ДЧД)

Стереохимия гидрогенолиза

BOCCTAROBJERNE CIONOLLEO MADNAOB GODA NAJIOMNINA

Энтальпии образования некоторых оксидов

	and GER hour	
Оксид	$\Delta { m H^o}_{ m oбразования} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	АН ^о образования в пересчете на 1 атом элемента в молекуле, ккал/моль
H ₂ O	57,8 (пар) 68,3 (жидкость)	28,9 34,2
CO ₂	94	94
B_2O_3	299,9	150
P ₄ O ₁₀	719,4	180
α-Al ₂ O ₃	400,5	200
SiO ₂ (α-κварц)	217,7	217,7
TiO ₂ (рутил)	225,6	225,6
ZrO ₂	239	239

B, AI, Si, P, Ti, Zr

обладают выраженным сродством к кислороду -

оксигенофильностью

Это свойство данных элементов во многом обусловливает широкое применение их соединений как реагентов в органическом синтезе.

Электроотрицательность атомов (в скобках) и полярность связей

(2,50)
$$C \leftarrow H$$
 (2,20)

$$(2,01) \xrightarrow{\delta^+} \xrightarrow{\delta^-} H (2,20)$$

$$(1,47) \text{ Al} \longrightarrow \begin{matrix} \delta - \\ \text{H} \\ (2,20) \end{matrix}$$

Получение диборана и гидрида алюминия

3 NaBH₄ + 4 BF₃·Et₂O
$$\frac{0-10^{\circ}\text{C}}{\text{диглим}}$$

 \rightarrow $2 \text{ B}_2\text{H}_6$ + 3 NaBF₄ + 4 Et₂O

2 LiAlH₄ + H₂SO₄ + 2O
$$\frac{25^{\circ}\text{C}}{\text{ТГФ}}$$
 100%-ная $\frac{25^{\circ}\text{C}}{\text{ТГФ}}$ + 2 H₂ + Li₂SO₄

Разложение диборана и гидрида алюминия

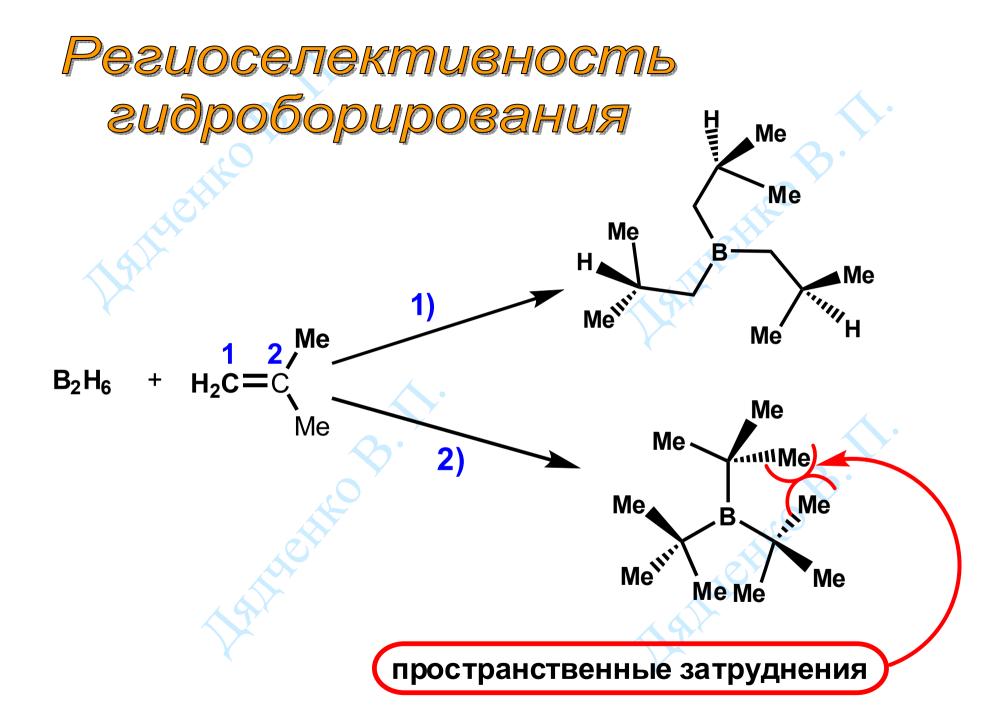
$$B_2H_6$$
 $\xrightarrow{115-120^{\circ}C}$ H_2 + $B_{10}H_{14}$ + другие бораны (10%)

В₂Н₆ широко применяется в органическом синтезе

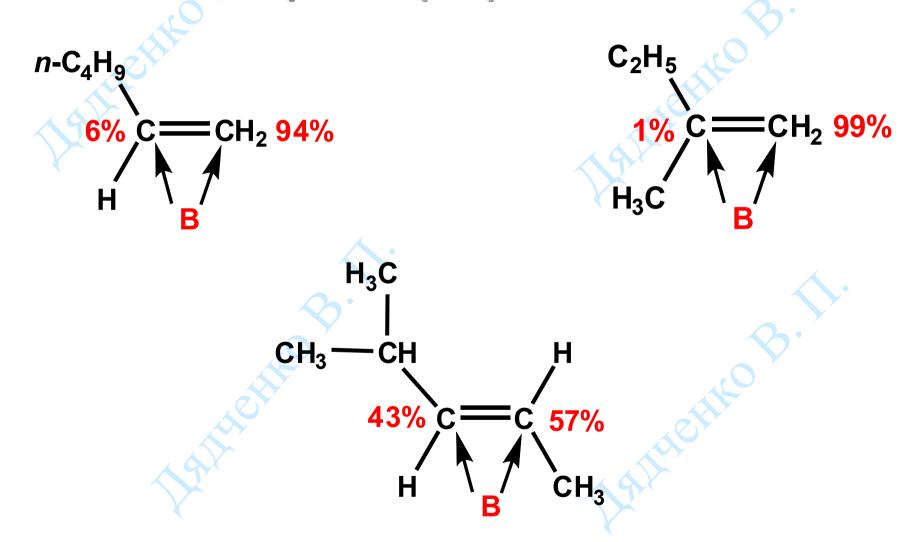
АІН₃ в синтетической практике не используется

Нобелевская премия за 1979 г.

Herbert Brown (1912 – 2004)


Реакция гидроборирования (H. C. Brown)

$$c=c$$
 + B_2H_6 — $c=c$ — cuh — присоединение H — B —


$$-c\equiv c$$
 + B_2H_6 \longrightarrow $c\equiv c$ $\xrightarrow{\text{присоединение}}$ H $\xrightarrow{\text{В}}$

Энтальпии образования гидридов

Гидрид	ЛН^о образования ККАЛ/МОЛЬ	Т. пл., °С
LiH	-21,7	680
NaH	-13,5	~800
AlH ₃	-2,3	100-150 (температура разложения)
B ₂ H ₆	+8,7	-165,5
$B_{10}H_{14}$	+26 (газ) -16 (кристалл)	99,7

Региоселективность гидроборирования

Влияние электронных факторов на процесс гидроборирования

H. C. Brown, R. L. Sharp, J. Am. Chem. Soc., 1966, v. 88, p. 5851

$$X \xrightarrow{CH_2} \xrightarrow{B_2H_6, 20^\circ} X \xrightarrow{CH_2-B} \xrightarrow{CH_2-B} X \xrightarrow{E}$$

X	Выход, %		
	I	П	
-OCH ₃	93	7	
-H	81	19	
-CI	73	27	
-CF ₃	66	34	

Гидроборирование пространственно затрудненных алкенов

Если алкен,

к которому присоединяется диборан, сильно пространственно затруднен,

то реакцию можно остановить

на стадии образования диалкилборана

и даже моноалкилборана.