Билет 9. Число е

<u>Теорема 9.1</u>. Существует предел последовательности $(1 + \frac{1}{n})^n$

Доказательство. Сначала докажем лемму

Лемма 9.1. (неравенство Бернулли).

Если $a \ge -1$, то $(1+a)^n \ge 1 + na$.

Доказательство. Используем метод математической индукции. При n=1 имеем: $(1+a)^1=1+1\cdot a, 1+a=1+a$. Предположим, что при n=k неравенство верно: $(1+a)^k\geq 1+ka$. Тогда при n=k+1имеем: $(1+a)^{k+1}=(1+a)(1+a)^k\geq (1+a)(1+ka)=1+(k+1)a+ka^2\geq 1+(k+1)a$. Неравенство доказано.

Чтобы доказать существование предела $\lim_{n\to\infty}(1+\frac{1}{n})$, рассмотрим последовательность $y_n=(1+\frac{1}{n})^{n+1}$. Для членов этой последовательности применим неравенство Бернулли, обозначив $a=\frac{1}{n^2-1}$, при этом очевидно, что $a\geq -1$.

$$\frac{y_{n-1}}{y_n} = \frac{(1+\frac{1}{n-1})^n}{(1+\frac{1}{n})^{n+1}}) = \frac{(\frac{n}{n-1})^n}{\frac{(n+1)}{n}^{n+1}} = \frac{n^n \cdot n^{n+1}}{(n-1)^n (n+1)^{n+1}}$$

$$= \frac{n^{2n}}{(n^2-1)^n} \cdot \frac{n}{n+1} = (\frac{n^2}{n^2-1})^n \times \frac{n}{n+1}$$

$$(1+\frac{1}{n^2-1})^n \cdot \frac{n}{n+1} \ge \left(1+\frac{n}{n^2-1}\right) \cdot \frac{n}{n+1} \ge \left(1+\frac{n}{n^2}\right) \cdot \frac{n}{n+1} = \left(1+\frac{1}{n}\right) \cdot \frac{n}{n+1} = 1$$
Таким образом, $\frac{y_{n-1}}{y_n} \ge 1$. Так как $y_n > 0$, то $y_{n-1} \ge y_n$, поэтому рассматриваемая последовательность убывает и ограничена снизу. Значит, существует предел $\lim_{n\to\infty} y_n = \lim_{n\to\infty} (1+\frac{1}{n})^{n+1}$. Так как $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1}$. Так как $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1}$. То и $\lim_{n\to\infty} (1+\frac{1}{n})^{-1}$. Следовательно, $\exists \lim_{n\to\infty} (1+\frac{1}{n})^n = \lim_{n\to\infty} (1+\frac{1}{n})^{n+1}$. $\lim_{n\to\infty} (1+\frac{1}{n})^{-1}$. Таким образом, $e = \lim_{n\to\infty} (1+\frac{1}{n})^n$.

<u>Теорема 9.2.</u> Имеет место равенство $e = \lim_{x \to \infty} (1 + \frac{1}{n})^{\frac{1}{x}}$.

Доказательство. (НА ЭКЗАМЕНЕ НЕОБЯЗАТЕЛЬНО ЕГО ЗНАТЬ. ЗНАТЬ НАДО ФОРМУЛИРОВКУ.ПРИВЕДЕНО ДЛЯ ИНТЕРЕСУЮЩИХСЯ МАТЕМАТИКОЙ)

1. Докажем сначала, что $\lim_{x \to +0} (1+x)^{\frac{1}{x}} = e$

Обозначим за n целую часть отношения $\frac{1}{x}$. $n = \left[\frac{1}{x}\right]$. Тогда справедливо неравенство: $n \leq \left[\frac{1}{x}\right] < n+1$. Перепишем его в виде $\frac{1}{n} \geq x > \frac{1}{n+1}$. Тогда $1+\frac{1}{n+1} < 1+x \leq 1+\frac{1}{n}$. При этом $(1+\frac{1}{n+1})^n < (1+x)^{\frac{1}{x}} < (1+\frac{1}{n})^{n+1}$, $(1+\frac{1}{n+1})^{n+1} \cdot \left(1+\frac{1}{n+1}\right)^{-1} < (1+x)^{\frac{1}{x}} < \left(1+\frac{1}{n}\right)^n \cdot (1+\frac{1}{n})$. В полученном неравенстве левая и правая части стремятся к e, т.к. $(1+\frac{1}{n+1})^{n+1} \rightarrow e$, $(1+\frac{1}{n+1})^{-1} \rightarrow 1$, $(1+\frac{1}{n})^n \rightarrow e$, $(1+\frac{1}{n}) \rightarrow 1$. Таким образом, по теореме "о зажатой переменной" **7.3.** получаем, что

Таким образом, по теореме "о зажатой переменной" **7.3.** получаем, что $\lim_{x\to +0} (1+x)^{\frac{1}{x}} = e.$

2. Докажем теперь, что $\lim_{x \to -0} (1+x)^{\frac{1}{x}} = e$.

Обозначим y = -x. Получаем, что $(1+x)^{\frac{1}{x}} = (1-y)^{-\frac{1}{y}} = (\frac{1}{1-y})^{\frac{1}{y}} = (\frac{1}{1-y})^{\frac{1}{y}} = (\frac{1}{1-y})^{\frac{1}{y}} = (\frac{1}{1-y})^{\frac{1}{y}} = (1+\frac{y}{1-y})^{\frac{1}{y}}$. Выражение $\frac{y}{1-y} \to +0$ при $x \to -0$. Обозначив $t = \frac{1}{1-y}$ получаем, что $t \to +0$, $y = \frac{t}{t+1}$. Тогда $(1+\frac{1}{1-y})^{\frac{1}{y}} = (1+t)^{\frac{t+1}{t}} = (1+t)^{\frac{1}{t}} \cdot (1+t)$. Полученное выражение стремится к e при $t \to +0$, т.к. $(1+t)^{\frac{1}{t}} \to e$, $(1+t) \to 1$. Теорема доказана.