Лекция 9

Критерий Коши существования предела функции

Сейчас мы докажем обобщение критерия Коши для последовательности на случай функций *вещественного* аргумента. Этот критерий является обобщением аналогичного результата для последовательностей, так как последовательность – функция *натурального* аргумента, а натуральные числа – подмножество вещественных.

Полезно ещё раз обратить внимание, как работают определения пределов по Коши и Гейне.

Теорема 1. (Критерий Коши.) Пусть функция f определена на множестве E, a – предельная точка множества E. Функция f имеет предел e точке e тогда e тогда, когда для любого числа e > 0 существует такое число e > 0, что для любых чисел e + e

$$\exists \lim_{x \to a} f(x) \iff \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall \ x, y \in \overset{\circ}{U}_{\delta} \ (a) \cap E \ |f(x) - f(y)| < \varepsilon.$$

Доказательство. **Необходимость.** Пусть $\lim_{x\to a} f(x) = A$. Тогда по определению предела по Коши $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in E \cap \overset{\circ}{U}_{\delta} \; (a) \; |f(x) - A| < \varepsilon/2$. Если $y \in E \cap \overset{\circ}{U}_{\delta} \; (a)$, то $|f(x) - f(y)| = |f(x) - A + A - f(y)| \leq |f(x) - A| + |f(y) - A| < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Необходимость доказана.

Достаточность. Пусть последовательность $\{a_n\}_{n=1}^{\infty}$ такова, что $a_n \in E \setminus \{a\} \forall n \in \mathbb{N}$, $\lim_{n \to \infty} a_n = a$. Тогда при любом $\delta > 0$, найдётся такое $N \in \mathbb{N}$, что $a_n \in E \cap \overset{\circ}{U}_{\delta}(a)$ при всех n > N, из чего по условию следует, что последовательность $\{f(a_n)\}_{n=1}^{\infty}$ фундаментальна, а тогда существует предел этой последовательности. Пусть $\lim_{n \to \infty} f(a_n) = A$. Рассмотрим теперь другую последовательность, $\{b_n\}_{n=1}^{\infty}$, и пусть для неё также вы-

Рассмотрим теперь другую последовательность, $\{b_n\}_{n=1}^{\infty}$, и пусть для неё также выполнены условия, которым удовлетворяет последовательность $\{a_n\}_{n=1}^{\infty}$. Если мы докажем, что $\lim_{n\to\infty} f(b_n) = A$, то существование предела функции f в точке a будет следовать из определения предела по Гейне. Отметим, что последовательность $\{a_1,b_1,a_2,b_2,...,a_n,b_n,...\}$ также сходится к числу a, поэтому при любом $\delta>0$, найдётся такое $N_1\in\mathbb{N}$, что и a_n , и b_n принадлежат множеству $E\cap \mathring{U}_{\delta}$ (a) при всех $n>N_1$, поэтому последовательность $\{f(a_1),f(b_1),f(a_2),f(b_2),...,f(a_n),f(b_n),...\}$ фундаментальна, а тогда у неё есть предел. Тогда у этой последовательности ровно один частичный предел, который и совпадает с её пределом. Выше мы доказали, что $\lim_{n\to\infty} f(a_n) = A$, то есть подпоследовательность последовательности $\{f(a_1),f(b_1),f(a_2),f(b_2),...,f(a_n),f(b_n),...\}$ сходится к A. Тогда и вся эта последовательность сходится к A, поэтому её подпоследовательность $\{f(b_n)\}_{n=1}^{\infty}$ сходится к тому же пределу, что и завершает доказательство.

Теорема Вейерштрасса

Пусть функция f определена на множестве E и a – предельная точка множества E. Пусть $E_a^+ = \{x \in E : x > a\}$, т. е. $E_a^+ = E \cap (a, +\infty)$. Аналогично, $E_a^- = E \cap (-\infty, a)$. Тогда точка a является предельной для хотя бы одного из множеств E_a^- и E_a^+ . Дадим определение **односторонних пределов** функции f в точке a.

Определение 1. Пусть a – предельная точка множества E_a^+ . Число A называется **пределом справа** функции f в точке a, если

$$\lim_{E_a^+\ni x\to a} f(x) = a,$$

то есть для любого $\varepsilon > 0$ существует такое $\delta > 0$, что при всех $x \in E_a^+ \cap \overset{\circ}{U}_\delta$ (a) $|f(x) - A| < \varepsilon$. Обозначение: $\lim_{x \to a+0} f(x) = A$ или $\lim_{x \to a+} f(x) = A$. Аналогично определяется предел слева функции f в точке a, обозначаемый $\lim_{x \to a-0} f(x)$ или $\lim_{x \to a-} f(x) = A$ только множество E_a^+ в определении заменяется на E_a^- . Пределы справа и слева называются также односторонними пределами.

Иными словами, предел справа — это предел, при котором x стремится к a, всегда оставаясь вольше a, а предел слева — тот, при котором x стремится к a, всегда оставаясь меньше a. При этом, разумеется, x всегда принадлежит множеству E. Отметим, что если a — предельная точка только для множества E_a^- или E_a^+ (ещё раз отметим, что тогда она всё равно является предельной для E), то мы можем говорить только о существовании соответствующего одностороннего предела.

Упражнения. 1) Запишите определения односторонних пределов с помощью кванторов.

2) Дайте определения односторонних пределов, пользуясь терминологией последовательностей, то есть по Гейне.

Дадим теперь определение монотонной на множестве E функции.

Определение 2. Если для любых таких $x_1, x_2 \in E$, что $x_1 < x_2$, выполнено неравенство $f(x_1) \leq f(x_2)$, то функция f называется **неубывающей** на множестве E. Если выполнено неравенство $f(x_1) < f(x_2)$, то функция называется возрастающей на множестве E. Если выполнены противоположные неравенства, то функция называется соответственно **невозрастающей** и **убывающей** на множестве E. Функция любого из четырёх указанных видов называется **монотонной** на множестве E функцией.

Упражнение. Всегда ли сумма монотонных функций монотонна? (*Ответ: нет*).

Определение 3. Функция f называется ограниченной на множестве M, если она определена на этом множестве и существует такая константа C > 0, что $|f(x)| \le C$ при всех $x \in E$.

Сформулируем теорему, которая обобщает теорему Вейерштрасса для последовательностей.

Теорема 2. (Теорема Вейерштрасса). 1) Пусть функция f определена на множестве E и a – предельная точка множества E_a^- . Пусть f не убывает и ограничена сверху на множестве E_a^- . Тогда существует предел слева функции f в точке a и имеет место равенство $\lim_{x\to a-0} f(x) = \sup_{x\in E_a^-} f(x)$.

2) Пусть функция f не убывает и ограничена на множестве E. Пусть a – предельная точка множества E_a^+ . Тогда существует предел справа функции f в точке a и имеет место равенство $\lim_{x\to a+0} f(x) = \inf_{x\in E_a^+} f(x)$.

Доказательство. 1) По определению точной верхней грани,

$$\forall \varepsilon > 0 \ \exists x_0 \in E_a^- : M - \varepsilon < f(x_0) \le M,$$

где $M:=\sup_{x\in E_a^-}f(x)$. Так как функция f неубывающая, то $\forall x\in E_a^-:x>x_0$ (что означает, что $x_0< x< a$ и $x\in E)$ выполнены неравенства $M-\varepsilon< f(x_0)\le f(x)\le M$, т. е. при любом $\varepsilon>0$ мы нашли такое $\delta:=a-x_0>0$, что при всех $x\in E_a^-\cap U_\delta$ (a) выполнено неравенство $|f(x)-M|<\varepsilon$, т. е. по определению

$$\lim_{x \to a-0} f(x) = \sup_{x \in E_a^-} f(x) = M.$$

Пункт 2) докажите в качестве упражнения.

Упражнение. Сформулируйте и докажите аналогичные утверждения для невозрастающих функций.