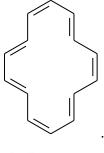
Молекулярные орбитали и уровни энергии (8 баллов)


Вопрос	1	2	3	4	5	Всего
Техн. баллы	3	3	2	3	1	12
Проверка						

1. В таблице приведены данные о двухатомных гомоядерных молекулах и положительных ионах. Заполните пустые места в таблице. Укажите частицы с одинаковым порядком связи и объясните (качественно), почему энергия связи у них заметно различается. (3 балла)

Частица				
Энергия связи, кДж/моль	498	623	841	945
Длина связи, пм	121	112	112	110
Порядок связи				
Число валентных электронов	12	11	9	10

Объяснение		

Аннулены – циклические углеводороды с сопряженной системой двойных связей. В названиях аннуленов число атомов С в цикле обозначают цифрой в квадратных скобках:

[14]Аннулен

В рамках теории Хюккеля уровни эне формулой	ргии π-электронов для всех аннуленов выражаются
$E_n =$	$\alpha + 2\cos\left(\frac{\pi}{N} \cdot n\right) \cdot \beta$
где α и β — параметры молекулы (α на интегралом, β < 0), N — число двойных	азывают кулоновским интегралом, β — резонансным х связей в аннулене, n — номер уровня (n = 0, 1,, вырождены, все остальные вырождены двукратно.
2. Составьте диаграмму энергети распределение электронов по уровням (3 балла).	ческих уровней для [6]аннулена, изобразите для основного и первого возбужденного состояния
Расчет:	Схема уровней энергии
Основное состояние	Первое возбужденное состояние
3. Найдите энергию резонанса в [6]анн (2 балла)	улене (выразите через α и β)
Расчет:	
$E_{ m pe30H} =$	

4. Ниже приведены нормированные волновые функции [6]аннулена в приближении Хюккеля (ϕ_i обозначает $2p_z$ -АО i-го атома углерода). Для каждой из них определите номер уровня n (3 балла)

Ψ	Номер уровня <i>n</i>
$0.5(\varphi_1-\varphi_3-\varphi_4+\varphi_6)$	
$0.5(\phi_1-\phi_3+\phi_4-\phi_6)$	
$0.408 \big(\phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5 + \phi_6 \big)$	
$0.408 \big(\phi_{1}-\phi_{2}+\phi_{3}-\phi_{4}+\phi_{5}-\phi_{6}\big)$	
$0.289 \left(\phi_{1}-2 \phi_{2}+\phi_{3}+\phi_{4}-2 \phi_{5}+\phi_{6}\right)$	
$0.289 \left(\phi_{1}+2 \phi_{2}+\phi_{3}-\phi_{4}-2 \phi_{5}-\phi_{6}\right)$	

5. В электронном спектре [6]аннулена максимум наблюдается при 256 нм. Найдите значение β (в кДж/моль) (1 балл)

Расчет: β = кДж/моль

Формула:

$$\Delta E = \frac{hcN_{\rm A}}{\lambda}\,,\,h = 6.63{\cdot}10^{-34}$$
Дж·с.