Химическая кинетика (9 баллов)

Задание	1	2	3	4	5	6	Всего
Техн. баллы	2	1	2	2	1	3	11
Проверка							

Сахароза (Suc, $C_{12}H_{22}O_{11}$) — широко распространённый дисахарид, являющийся, как и большинство природных соединений, оптически активным. В водной среде медленно гидролизуется на глюкозу (Glc) и фруктозу (Fru). В ходе реакции удельное вращение раствора меняет знак, поэтому она получила название инверсия сахарозы. Этот процесс катализируется кислотами:

$$Suc + H^+ \leftrightarrow SucH^+$$
 (K)

$$SucH^+ + H_2O \rightarrow Glc + Fru + H^+$$
 (k)

В рамках квазистационарного приближения скорость процесса выражается как

$$r = kK[H^+][H_2O][Suc] = k_{eff}[Suc]$$

Карабас-Барабас решил изучить кинетику реакции инверсии сахарозы. Он выдал Мальвине и Пьеро раствор сахарозы 1.5М, при этом поручил Мальвине использовать для подкисления HCl, а Пьеро – CH₃COOH. Концентрации обеих кислот в изучаемой системе были равны 10⁻³ М. При температурах 7°C и 17°C герои получили следующие эффективные константы скорости (**k**eff):

Подкисление	7°C	17°C
HCl	2.1 ч ⁻¹	6.0 ч ⁻¹
CH ₃ COOH	0.25 ч ⁻¹	0.71 ч ⁻¹

1. Вычислите величину kK при 17°С ($\rho = 1.19$ г/мл) и укажите её размерность.

kK =		

2. Вычислите энергию активации реакции инверсии сахарозы.

3. Рассчитайте по кинетическим данным ко	онстанту кислотности СН₃СООН при 7°С				
$K_{a, AcOH} = $					
У Карабаса-Барабаса испортилось настр	осение, и он решил наказать Мальвину и Пьеро, велев				
им измерить константу скорости при температу	уре -3°С. Ребята нашли выход из положения и решили				
добавить KCl для понижения температуры пл	добавить KCl для понижения температуры плавления раствора. Криоскопическая константа воды				
равна 1.86 К · л/моль.					
4. Рассчитайте массу КСІ, который необходимо добавить к 1 литру 1.5М раствору сахарозы,					
чтобы температура замерзания раствора ста:	ла равна -3°C, и ионную силу, создаваемую этим				
электролитом.					
m(KCl) = г	I = M				
5. Выберите из списков пункты, относящие	еся к системам Мальвины и Пьеро.				
При добавлении KCl (-3°C):					
А) Солевой эффект не наблюдается	1) k _{eff} совпадёт с рассчитанной по ур. Аррениуса				
Б) Наблюдается первичный солевой эффект	2) k _{eff} превысит рассчитанную по ур. Аррениуса				
В) Наблюдается вторичный солевой эффект	3) k _{eff} меньше рассчитанной по ур. Аррениуса				
Мальвина: Пьеро:					

6. Рассчитайте эффективные константы (keff), которые получат Мальвина и Пьеро при -3°C в
присутствие КСІ. Температурной зависимостью константы диссоциации уксусной кислоты
пренебрегите, берите значение из п.3. Если Карабас-Барабас вас напугал, и вы не смогли её
рассчитать, используйте значение 10-5.
Мальвина: $k_{eff} = \underline{\hspace{1cm}} q^{-1}$
Пьеро: $k_{eff} = y^{-1}$

Справочная информация:

$$k^{(p-p)} = k^{(ras)} \frac{\gamma_A \gamma_B}{\gamma^{\neq}}$$

$$\lg \frac{a}{c} \equiv \lg \gamma = -\frac{2624}{T^{3/2}} z^2 \sqrt{I}$$

$$K_a = \frac{a_{H^+} a_{A^-}}{a_{HA}}$$