О важности локализации биохимических процессов (8 баллов)

Автор – А.К. Гладилин

Вопрос	1	2	3	4	Всего
Техн. баллы	3	5	8	4	20
Проверка					

Существуют две формы фермента карбамоилфосфатсинтетазы, катализирующего приведенную ниже реакцию:

$$O \longrightarrow O$$
 $O \longrightarrow O$
 $O \longrightarrow O$

. Изобразите продукты субстрат А и продукты В и С (3 балла).

	1. Изобразите продукты субстрат A и продукты b и С (3 балла).				
I	A	В	C		
	ATP ⁴⁻	ADP ³⁻	$\mathrm{HPO_{4}^{2-}}$		
	O O O NH N+ O-P-O-P-O-P-O O-O-O-O-O-O-O-O-O-O-O-O-O	NH ₂ N N N N N N N N N N N N N N N N N N N	0 HO—P—O ⁻ - O		

Карбамоилфосфатсинтетаза I локализована в митохондриальном матриксе клеток печени. Один из продуктов этой реакции поступает в цикл мочевины, основной физиологической задачей которого является выведение из организма излишков азота в нетоксичной форме.

В печени животного происходит окислительное расщепление глутаминовой кислоты, меченной ¹⁴С по второму атому углерода и ¹⁵N по аминогруппе. В каком положении могут быть обнаружены метки в следующих метаболитах глутаминовой кислоты: а) мочевина, b) сукцинат, c) аргинин, d) цитруллин, e) орнитин.

2. Изобразите вышеперечисленные соединения, обозначая все возможные меченные атомы надстрочными индексами 14 и 15 , соответственно. (**5 баллов**)

Карбамоилфосфатсинтетаза II локализована в цитозоле. Катализируемая ею реакция оказывается в начале превращения, ведущего к мононуклеотиду пиримидинового основания урацила (UMP) согласно приведенной ниже схеме:

3. Изобразите соединения **D-H** и UMP, если **D** – каноническая α -аминокислота (48,08 мас. % O), а все стадии на схеме – ферментативные реакции (**8 баллов**).

(10,00 mae. 70 0), a see cradin na exeme qepmentaribilible peakin (0 oashios).				
D	E	F		
O NH ₃	NH ₂ O.	O NH O		
G	Н	UMP		
HN O	HO-P-O OH OH	HO-P-O-O-NOH OH		

Тимин является метилированным по положению 5 производным урацила.

4. Изобразите (или приведите ключевые фрагменты) двух метилирующих агентов, которые могут быть использованы организмом для превращения урацила в тимин. Укажите, какие канонические α-аминокислоты служат реальными источниками метильной группы в случае каждого метилирующего агента (4 балла).

	<u> </u>	
Метилирующий	0	o ·
агент	H_2 N H	H ₃ N [*] NH ₂ NH ₂ NH ₃ C NH ₃ C NH ₂ N N N N N N N N N N N N N
Соответствующая α-аминокислота	но о	H ₃ C S O
	$\dot{N}H_3^{+}$	NH ₃