РЕНТГЕНОВСКАЯ СПЕКТРОСКОПИЯ ПОГЛОЩЕНИЯ

(XAFS – СПЕКТРОСКОПИЯ)

XAFS – X-ray Absorption Fine Structure

2.4 **EXAFS**-External X-ray Absorption Fine Structure-EXAFS . 2.0) 당 протяженная тонкая структура рентгеновских спектров поглощения 1.2 XANES-X-ray XANE Near Edge Structure около-пороговая тонкая структура E₀. рентгеновских 0.4 13200 13600 спектров 14000 14400 hω(эB) поглощения

Схема возбуждения фотоэлектронов с глубоких остовных уровней при поглощении рентгеновских квантов

Схема взаимодействия фотоэлектрона с атомам и ближай шего окружения

<u>ИСТОРИЯ</u>

Впервые тонкая структура за краем поглощения наблюдалась более 80 лет назад: Hertz G. //Z. Physik, v. 3, 1920, p. 19. Fricke H. //Phys.Rev. v. 16, 1920, p. 202. Lindh A.E. //Z. Physik, v. 6, 1920, p. 303; v. 31, 1925, p. 210. Coster D. //Z. Physik, v. 25, 1924, p. 83. **Теоретические объяснения:** de L. Kronig R. // Z. Physik, v. 70, 1931, p. 317. – ошибочное: дальний порядок. de L. Kronig R. // Z. Physik, v. 70, 1932, p. 468.– ближний порядок

География XAFS исследований в России. Новосибирск: 1-ая EXAFS-станция на синхротроне ВЭПП-3 (Д.И.Кочубей и др.). Ростов-на-Дону: теоретическая школа EXAFS- и XANES – спектроскопии: И.Б.Боровский, Р.В.Ведринский, А.В.Солдатов и др. Екатиринбург: Ю.А.Бабанов и др. Екатиринбург: Ю.А.Бабанов и др., Москва: МГУ Физфак- Ю.В.Пономарев, А.И.Лебедев МГУ Химфак, ИНЕОС- Ю.Л.Словохотов и др. КЦСИиНТ – А.Н. Артемьев, А.А.Чернышов

МИФИ – А.П.Менушенков и др.

Развитие исследований XAFS: Peterson H. //Z. Physik, v. 76, 1932, p. 768; v. 80, 1933, p. 528, v. 98, 1936, p. 969. Костарев А.И. // ЖЭТФ т.11, с. 60, т. 19, 1941, с. 413. Sawada M. // Rep. Sci. Works Osaka Univ. v.7, 1959, p. 1. Шмидт В.В. // Изв. АН СССР, Сер. Физ. Т. 25, 1961, с. 977; т. 27, 1963, с. 392. Козленков А.И. // Изв. АН СССР, Сер. Физ. Т. 25, 1961, с. 957; T.27, 1963, с. 364; Т. 38, 1964, с. 500 Применение фурье-преобразования Sayers D.E., Stern E.A., Lytle W.F.// Phys.Rev.Lett v.27, 1971, p. 1024.

Монографии и обзоры:

- 1. Д.И.Кочубей, Ю.А.Бабанов, К.И.Замараев и др. // EXAFS- спектроскопия. Новосибирск, Наука, 1988, 306 с.
- И.Б.Боровский, Р.В.Ведринский, В.Л.Крайзман, В.П.Саченко //УФН, Т.149, 1986, с. 275.
- В.Л.Аксенов, С.И.Тютюнников, А.Ю.Кузьмин, Ю.Пуранс // Физика элементарных частиц и атомного ядра, Т. 32, 2001, в. 6, с. 1299.
- J.J. Rehr, R.C. Albers // Rev. Mod. Phys., v. 72, 2000, p. 621.

Программные пакеты:

- 1. FEFF 8.12 J.J. Rehr, A.Ankudinov et al.
- 2. EDA EXAFS data analysis А.Кузьмин.
- 3. IFEFFIT: interactive XAFS analysis and FEFF fitting M.Newville
- VIPER Visual processing in EXAFS researches for Windows – К.В. Клементьев свободный доступ: http://www.desy.de/~klmn/viper.html

Методы EXAFS- спектроскопии.

- 1. "На прохождение"
- 2. Флуоресцентный (Fluorescence) FEXAFS
- Поверхностный (Surface) SEXAFS: по измерению оже-электронов, полного выхода фототока, выхода фотостимулированной десорбции ионов, полного внешнего отражения
- 4. Метод EXAFS-спектроскопии оптической люминесценции (X-ray Excited Optical Lumin escence XEOL)
- 5. Метод циркулярного магнитного дихроизма (Circular Magnetic X-ray Dihroism CMXD)
- 6. Метод измерения аномалий интенсивности брэгговских пиков (Diffraction Anomalous Fine Structure – DAFS)

Выделение EXAFS- функции $\chi(k)$

Моделирование EXAFS- функции $\chi(k)$ в <u>k-пространстве</u> $\chi(k) = \sum_{R} S_0^2 N_R \frac{|f(k)|}{kR^2}$ $\times \sin(2kR + 2\delta_c + \Phi)e^{-2R/\lambda(k)}e^{-2\sigma^2k^2}$.

Подгоночные параметры:

 ΔE_0 , N_R, R_n, σ^2

Расчетные зависимости амплитуди фаз обратного рассеяния от волнового вектора

Зависимость длины свободного пробега фотоэлектрона от энергии. Зависимость амплитуд обратного рассеяния от волнового вектора

Низкотемпературные аномалии факторов Дебая-Валлера ВаВіО ₃		
Аномальный рост Д В	2.30	
факторов обеих	2.25 -	×,
БІ-О связей при T < 90К.	2.15 -	-
Т.о. колебания	2.10 A B B	o B ≙ o
кислорода не	2.05	
гармоническому	0.010 -	Ą
закону. A.Menushenkov et al., Physica		م م م
277, pp. 257-263, 1997	0.000	

Учет ангармонизма в кумулянтной модели

$$\begin{split} \chi(k) &= \sum_{i} \frac{N_i S_0^2}{k R_i^2} F_i(\pi, k, R_i) \, \exp\left[-2\sigma_i^2 k^2 + \frac{2}{3} C_{4i} k^4 - \frac{4}{45} C_{6i} k^6\right] \times \\ & \times \exp\left[-\frac{2R_i}{\lambda(k)}\right] \, \sin\left[2k R_i - \frac{4}{3} C_{3i} k^3 + \frac{4}{15} C_{5i} k^5 + \Psi_i(\pi, k, R_i)\right], \end{split}$$

С_{3i}, С_{4i}, С_{5i}, С_{6i} – кумулянты распределения, позволяющие аппроксимировать вклад эффектов ангармонических колебаний и/или негауссова беспорядка.

Моделирование EXAFS- функции χ(k) в г- пространстве с помощью ПФРРА

Моделирование χ(k) в r- пространстве с помощью модельного потенциала U(r)

Схема формирования электронной структуры ВаВіО₃

Электронное заполнение двух соседних октаэдров различно: BiO_6 - полностью заполненная $Bi6sO2p_{\sigma^*}$ -антисвязывающая орбиталь; $Bi\underline{L}^2O_6$ - свободная $Bi6sO2p_{\sigma^*}$ - орбиталь.

Учет эффектов многократного рассеяния в октаэдрическом кластере ZnO₆

Критерии выбора модели

Теорема Найквиста ограничивает максимальное количество параметров модели:

$$M_{\max} = (2\Delta k\Delta R)/\pi + 2.$$

Критерий Фишера позволяет выбрать модель с минимальным количеством параметров, которая удовлетворяет экспериментальным данным. Пусть количество параметров двух моделей $\chi_1(k)$ и $\chi_2(k)$ равно M_1 и M_2 ($M_2 > M_1$), тогда дисперсии D_1 и D_2 равны

$$D_j = [M_{\max}/(n(M_{\max} - M_j))] \sum_{i=1}^{j} [\chi(k_i) - \chi_j(k_i)]^2, \quad j = 1, 2, i = 1...n_j$$

и согласно $F_{0.95\%}$ - критерию Фишера модель $\chi_2(k)$ принимается, когда $D_1/D_2 > F_{0.95\%}$. Значения $F_{0.95\%}$ затабулированы.

ОСОБЕННОСТИ ЛОКАЛЬНОЙ СТРУКТУРЫ НАНОКРИСТАЛЛИЧЕСКИХ ПОРОШКОВ ZrO₂

ОСОБЕННОСТИ ЛОКАЛЬНОЙ СТРУКТУРЫ УЛЬТРАДИСПЕРСНЫХ ПОРОШКОВ ZrN

Оптическая схема энергодисперсионного EXAFSспектрометра для установки в КЦСИиНТ

Преимущества ХАFS- спектроскопии

- Селективная избирательность к определенному типу элементов в сложных соединениях
- Высокая чувствительность к ближнему порядку
- Чувствительность к парциальным плотностям свободных состояний над уровнем Ферми
- Возможность определения мгновенных (10⁻¹⁵ с) валентных состояний ионов в соединениях с промежуточной валентностью
- Возможность исследования материалов в кристаллическом, квазикристаллическом и аморфном состояниях
- Возможность исследования примесных состояний
- Возможность получения информации об объемных свойствах материалов