Division of Radiochemistry

Lomonosov Moscow State University, Department of Chemistry

Ядерная энергетика – энергетика будущего

Калмыков Степан Николаевич

Замена генерирующей мощности в 1 ГВт на базе угля такой же мощностью ядерной энергетики позволяет избежать выбросов СО₂ в объеме 5,6 млн тонн в год (МАГАТЭ).

Средние дозовые нагрузки у населения, живущего вблизи ТЭС, работающей на угле на 40 % выше, чем у населения, живущего около АЭС.

Сырье: уран 5 % от себестоимости электроэнергии, углеводороды — 75 % (более волатильные рынки).

Себестоимость: природный газ — 3,7 — 6,0 цента / кВт·ч АЭС — 2,1 — 3,1 цента / кВт·ч (OECD)

Вероятность деления зависит от энергии компаунд ядра, которая пропорциональна энергии налетающей частицы Пороговый характер: ²³⁸U — четно-четное ядро, порог превышает на 1 МэВ энергию связи нейтрона в ядре,

²³⁵U,²³⁹Pu – четно-нечетное ядро, порог близок к энергии связи нейтрона в ядре

Нейтронный спектр атомного реактора

Критические массы (кг) для различных нуклидов

Нечетное N									
Нуклид	²³³ U	²³⁵ U	²³⁹ Pu	²⁴¹ Pu	²⁴² Am	²⁴³ Cm	²⁴⁵ Cm	²⁴⁷ Cm	²⁴⁹ Cf
М _{крит}	0,57	0,79	0,51	0,232	0,017	0,108	0,036	1,170	0,047
Четное N									
Нуклид	²³¹ Pa	²³⁷ Np	²³⁸ Pu	²⁴⁰ Pu	²⁴¹ Am	²⁴³ Am	²⁴⁴ Cm		
Мкрит	550	43	4,5	96	71	500	14		

Энергия деления ядер нейтронами, МэВ

Кинетическая энергия осколков деления	174
Кинетическая энергия нейтронов	5
Гамма-кванты, испускаемые в момент деления	8
Бета распад продуктов деления	7
Испускание гамма-квантов продуктами деления	6
Нейтрино	10
ΝΤΟΓΟ	210

Тепло от 1 г ²³⁵U (полное выгорание) 5·10²³МэВ = 1,94·10¹⁰ кал = 8,1·10¹⁰ Дж = 22,5 МВт·ч ≈ 1 МВт·сут

Распределение по массе осколков деления ²³⁵U тепловыми нейтронами

<u>Ядерный топливный цикл</u> включает все операции от добычи урановых руд и их переработки до захоронения отработавшего ядерного топлива (ОЯТ) или радиоактивных отходов (РАО), образовавшихся в результате переработки ОЯТ.

Способ обращения с отработавшим ядерным топливом:

Открытый ЯТЦ – Германия, Швеция, Швейцария, США, ...

Замкнутый ЯТЦ – Великобритания, Франция, Россия, ...

http://www.krugosvet.ru/enc/nauka_i_tehnika/tehnologiya_i_promyshlennost/URANOVAYA_PROMISHLENNOST.html

Хвостохранилища

Изотопное обогащение ²³⁵U

Природный: 0,72 %

Обедненный: < 0,72 %

Низкообогащенный: до 20 % (топлива 2-5 %)

Высокообгащенный уран: более 20 %

Промышленные методы:

Газодиффузионный метод

Газовые центрифуги

Различия в диффузии ²³⁵UF₆ и ²³⁸UF₆ через мембрану с диаметром пор 10-100 нм

Различия в скоростях движения $^{235}\text{UF}_6$ и $^{238}\text{UF}_6$ в центробежном поле

Ядерное топливо

Виды топлива:

Реакторы:

Оксидное Металлическое Карбидное Нитридное

На тепловых нейтронах

На быстрых нейтронах

Жидкое

Ядерный реактор включает активную зону, в которой содержится ядерное топливо и замедлитель нейтронов, отражатель нейтронов, теплоноситель для отвода тепла, системы управления цепной реакцией, защита реактора и его управление.

Отработавшее ядерное топливо

Продукты деления:

- Газы и легколетучие элементы: Br, Kr, Rb, I, Xe, Cs, Te;

- ПД, образующие металлические частицы: Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Se, Te

- ПД, образующие оксиды: Rb, Sr, Zr, Nb, Mo, Se, Te, Cs, Ba
- ПД, растворенные в форме оксидов в топливной матрице:
 Rb, Sr, Y, Zr, Nb, La, Ce, Pr, Nd, Pm, Sm, Eu.

Oxidation and dissolution in water

Uranium released as uranyl ions (UO₂)²⁺ ОБРАЩЕНИЕ С ОТРАБОТАВШИМ ЯДЕРНЫМ ТОПЛИВОМ (ОЯТ)

ПЕРЕРАБОТКА VS. ЗАХОРОНЕНИЕ?

Проблема нераспространения

Уран-плутониевый цикл — наработка Pu-239, который возможно использовать для производства ядерного оружия.

Май 1974г. – «Будда засмеялся»

реактор CIRUS

Радиоактивные отходы (РАО)

источник	ОБЪЕМ (м ³)	АКТИВНОСТЬ (Ки)		
Добыча и переработка руд	10 ⁸	1,8×10 ⁵		
Обогащение урана, производство ТВЭЛов	1,6 × 10 ⁶	4 × 10 ⁴		
Атомные электростанции	3 × 10 ⁵	2,5 ×10 ³		
Радиохимические предприятия	5 × 10 ⁸	9 × 10 ⁸		
Эксплуатация атомных Подлодок, ледоколов	2,9 × 10 ⁴	2,1 × 10 ⁴		
Строительство и утилизация подлодок	4 × 10 ³	2 × 10 ²		
Изотопные источники	2,0 × 10 ⁵	6,0 × 10 ²		
В результате в России накоплено более				

600 миллионов м³ радиоактивных отходов активностью 2,5 миллиарда Ки

Relevant time scales

Захоронение РАО и/или ОЯТ

Геологическое захоронение РАО и/или ОЯТ

Различные геологические / геохимические условия

Граниты

Туфы

Глины

Солевые формации

Switzerland, Mont Terri (Opalinus Clays)

окислительные условия восстановительные условия

Глины

France, Bure, Mudstone

Граниты

Switzerland, Grimsel Test Site

Россия,

Granite samples from Niznekansk Rock Massif near Karasnoyarsk

Вулканические туфы

Yucca Mountain, USA, project stopped in 2010

Солевые формации

Germany, Gorleben, (moratorium)

Многобарьерная система при захоронении РАО/ОЯТ

Инженерные барьеры:

- матрица, в которую включены РАО (стекла, керамики)
- упаковка / контейнер
- буфер (глины, цементы, ...)

Геохимические барьеры: - горная порода

Малонаселенное место, вне доступа подземных вод

Хранилище ОЯТ (США) Yucca Mountain, проект закрыт в 2010

Прямое захоронение ОЯТ – открытый ЯТЦ

Шведский подход: Канистры из меди 50 мм

Источник: SKB

1- Dimitrovgrad; 2 - Tomsk-7; 3 - Krasnoyarsk-26; 4 - PA "Mayak"
 5 - Krasnokamensk; 6- Kola peninsula; 7 - Primorie (Far East)
 ★Nuclear power plants

Источники радиоактивного загрязнения южного Урала

22 декабря 1948 — завод по выделению оружейного плутония из облученного урана

Производительность – переработка до 1 тонны урановых блоков в день

около 10⁵ Ки

За год до пуска завода по получению оружейного плутония принято решение о строительстве комплекса «С» - закрытых емкостей для сброса ВАО из расчета 15000 м³ в год. Реальные объемы накопления ВАО составили 200 м³ в день.

Все ёмкости заполнились уже в 1950 г. Строительство новых ёмкостей стоило стране ~1 млн. рублей в день. Мера сбросов сточных вод в ёмкости «С» себя не оправдал.

С 1949 по 1956 гг. в р. Теча осуществлялся сброс отходов радиохимического производства. Всего за указанный период в реку было сброшено 76 млн. м³ сточных вод общей активностью около 2,8 млн Ки (по оценкам 1956 г.).

Объемы РАО, поступивших в р. Теча

	I-XI.1949	XII.1949 -II.1950	III.1950 -XI.1951
Общая β-активность, Ки/день	70	860	4300
⁸⁹ Sr + ¹⁴⁰ Ba, %	1.8	6.9	8.8
⁹⁰ Sr, %	4.1	15.3	11.6
⁹⁵ Zr + ⁹⁵ Nb, %	30	9.0	13.6
^{103,106} Ru, %	55.6	45.3	25.9
¹³⁷ Cs, %	11	21.2	12.2
REE, %	-	5.7	26.8

Создание Теченского каскада Водоемов

Промышленные водоемы ПО «Маяк»

Осенью 1951 г. сброс РАО был переведен с р. Теча в бессточное озеро Карачай. Позднее сброс и хранение части средне- и низкоактивных отходов производства производился в изолированных от открытой гидрографической сети водоемаххранилищах. На предприятии существует восемь таких хранилищ — водоем В-2 (оз.Кызылташ), водоемы В-3, В-4, В-10, В-11 (Теченский каскад водоемов — ТКВ), водоем В-6 (оз. Татыш) и водоемы — хранилища САО - В-17 (Старое Болото) и В-9 (оз.Карачай). В водоемах депонировано более 120 млн Ки (4,4·10¹⁸ Бк) бетаизлучателей и 1 млн Ки (3,7·10¹⁰ Бк) альфа-излучателей.
Промышленные водоемы ПО «Маяк»

Поведение в окружающей среде

Rocky Flats Environmental Technology Site (RFETS)

1995

Определение физико-химических форм плутония

Спектральные и микроскопические методы: XPS, EXAFS, XANES, ... Pu(III) (HCIO,) SEM, TEM, XRF, ... Pu(IV) (HCIO Pu(V) (HCIO,) Pu(VI) (HCIO_) Поглощение Pu(IV) standard Pu(VI) standard (different run) Sample 1 1.5 Sample 2 Pu L_n Normalized Absorbance 1.0 18045 18060 18075 18090 Энергия, эВ 0.5 Ju/JeV µ/deV² 22265 22275 22260 22270 0.0 22250 22270 22290

oV

Некоторые современные спектральные и микроскопические методы определения физико-химических форм:

Рентгеновская фотоэлектронная спектроскопия (XPS) – степень окисления,

Рентгеновская спектроскопия поглощения (XAFS) – XANES и EXAFS – степень окисления, локальное атомное окружение (координационные числа, длины связей, факторы Дебая),

Рентгенофлуоресцентная спектроскопия (XRF) – локальное концентрирование (элементные карты),

Сканирующая электронная микроскопия с рентгеновским микроанализом – морфология частиц, локальное распределение основных элементов,

Просвечивающая электронная микроскопия с дополнительными опциями – распределение элементов с атомным разрешением, нанодифракция, степень окисления.

МГУ, Курчатовский Институт

EXAFS отдельных частиц, содержащих плутоний

В 1995 US DOE оценила реабилитацию Rocky Flats в сумму \$37 млрд в течение 70 лет. В 1996, DOE и Kaiser-Hill начали работы по реабилитации, которые были завершены к концу 2006 года, потратив \$7 млдр.

Авария на ЧАЭС

напоминание

- 26 апреля, 1986, ночь, 4-й блок Чернобыльской АЭС
- Взрыв или несколько взрывов
- Полное разрушение активной зоны ядерного реактора
- Пожар
- Выброс огромного количества радиоактивных газов, пыли и аэрозолей
- Предельно высокое радиоактивное загрязнение огромных территорий Украины, Белоруссии, России
- Радиоактивные пятна в Швеции, Польше, Германии и других странах

Несколько дней спустя (май, 1986)

Общие данные о реакторе на момент аварии

- 1659 топливных кассет (по 2 тепловыделяющих сборки ТВС в кассете)
- Macca 1 кассеты (по 2 ТВС) 185 кг, длина 10 м
- В каждой ТВС по 18 тепловыделяющих элементов (твэлов). Внутренняя полость твэла заполнена смесью аргона с гелием
- Масса урана (по металлу) в кассете 114.7 кг
- Масса оксида урана в 1 твэле 3.6 кг
- Масса оксида урана в 1 кассете (из 2 ТВС) 125-135 кг ?????

(данные из справочника – почему не 130 ?)

- Длина активной зоны кассеты (из 2 твэлов) примерно 7 м
- Масса графитовой кладки 1700 тонн (рабочая температура 700-750°С)
- Масса циркониевого сплава по длине активной зоны кассеты до 40 кг
- Температура воды на входе в кассету 265°С
- Температура воды на выходе из кассеты 290°С
- Давление воды (вход-выход) в кассете 80-75 атм.
- Максимальная температура на поверхности оболочки твэла 295°С
- Максимальная температура в центре топливной таблетки 2100°С ИТОГО: 190 тонн урана (по металлу) или 215 тонн диоксида урана

Спустя 4 года (зима, 1990)

Сохранившиеся участки «рыжего» леса (мертвые сосны) 1.5

км к западу от ЧАЭС, весна 1990

Радиоактивное загрязнение местности в ближней зоне ЧАЭС крайне неравномерное

участки мертвого леса чередуются с живыми деревьями

Динамика радионуклидного выброса в первые 11 дней

результаты измерений с вертолетов (опубликованы МАГАТЭ)

В бывшей шахте реактора ядерное топливо не обнаружено (в значимых количествах),

но в подреакторных помещениях найдены скопления топливосодержащих

масс (ТСМ) или Чернобыльские лавы

Язык Чернобыльской лавы «Слоновья нога» (1990)

Участок «Слоновьей ноги» (1990)

Первые образцы лавы из «Слоновьей ноги» сотрудникам Курчатовского института пришлось отстреливать из автомата Калашникова – из-за высокой механической прочности

В 1990 году этой проблемы уже не было — образцы легко откалывались. Была отмечена не только потеря механической прочности, но и разрыхление поверхности лавы

Чернобыльские лавы в парораспределительном коридоре (1990)

Отбор образцов «лав», 1990

Чернобыльские лавы – что это такое ?

Все образцы Чернобыльских лав, которые мы изучали, были отобраны вручную

(на фото – внутри «Саркофага» - образец лавы перед упаковкой для вывоза в Радиевый институт, 1990)

В одном из помещений «Саркофага» большие куски лав (десятки см³) растворяли в плавиковой кислоте

Нерастворимый остаток промывали, упаковывали и отправляли в Радиевый институт в Ленинград

Уникальный концентрат техногенных минералов, образовавшихся в результате аварии

Значительная часть этого материала не изучена до сих пор!

Образец черной Чернобыльской лавы

из «Слоновьей ноги»

Образец коричневой Чернобыльской лавы

из парораспределительного коридора

Образец пористой Чернобыльской лавы («пемзы») из бассейна-барботера

Черная лава (в отраженном свете в оптическом микроскопе) образец из «Слоновьей ноги»

Коричневая лава (в отраженном свете в оптическом микроскопе) образец из парораспределительного коридора

Коричневая лава (в отраженном свете в оптическом микроскопе) образец из парораспределительного коридора

Дентритные кристаллиты в матрице коричневых лав (в отраженном свете в оптическом микроскопе) образец из парораспределительного коридора

«Пемза»

(в отраженном свете в оптическом микроскопе) образец из из бассейна-барботера

«Пемза»

(в отраженном свете в оптическом микроскопе) образец из из бассейна-барботера

Черная лава под электронным микроскопом (в обратно-рассеянных электронах) образец из парораспределительного коридора

Черная лава под электронным микроскопом (в обратно-рассеянных электронах) образец из «Слоновьей ноги»

Коричневая лава под электронным микроскопом (в обратно-рассеянных электронах) образец из парораспределительного коридора

Некоторые замечания

Обнаружена необычная фаза Zr-U-O

Химическое взаимодействие фазы Zr-U-O с силикатным расплавом привело к образованию кристаллов высокоуранового циркона (Zr,U)SiO4

Обе фазы являются типичными включениями во всех типах Чернобыльских лав !

Кристалл высокоуранового циркона (Zr,U)SiO₄, извлеченный из матрицы Чернобыльской лавы

Кристалл высокоуранового циркона (Zr,U)SiO₄, извлеченный из матрицы Чернобыльской лавы

Агрегат кристаллов высокоуранового циркона (Zr,U)SiO₄, извлеченный из матрицы Чернобыльской лавы

Температурный предел устойчивости (безуранового) циркона ZrSiO₄ примерно 1660°C

Максимальная температура лавы не превысила этого значения

Авария на АЭФ Фукусима

Реактор типа BWR

Comparison of Discharged Radionuclides from Fukushima Dai-Ichi NPP and Chernobyl NPP Accidents

Fukushima Dai-ichi NPP

To atmosphere *1

131	$: 1.3 \times 10^{17}$	Bq
137 Cs	: 1.1 × 10 ¹⁶	Bq

• To ocean *2

131	: 2.8 × 10 ¹⁵ Bq
¹³⁴ Cs	: 0.94 × 10 ¹⁵ Bq
137Cs	$: 0.94 \times 10^{15}$ Bg

Total	: 1.4 × 10 ¹⁹	Bq
131	$: 1.8 \times 10^{18}$	Bq
¹³⁷ Cs	$: 8.5 \times 10^{16}$	Bq
⁹⁰ Sr `.	$: 1.0 \times 10^{16}$	Bq
Total Pu	: 3 × 10 ¹⁵ B	q
*1 IAEA "STI/	PUB/1239" (2006)	

*1 2011/8/23 NSC (Nuclear Safety Commission oj Japan *2 2011/4/21 TEPCO (Tokyo Electric Power Com.)

2. Land-use classification around the NPP site

Fukushima Dai-ichi NPP

- Urban area; <5%
- Paddy field; <10%
- Other field; <10%
- Forest; > 75%

Chernobyl (Av. Belarus)

- Agriculture; 43%
- Forest; 39%
- River & Lake; 2%

• Areas more than 0.2 μ Sv/h are decreasing, less than 0.2 μ Sv/h increasing. • Nearly 70% of the total area has dose rates between 0.1-0.5 μ Sv/h.

Clean-up of Roads and Pavement

high pressure water

surface stripping

blasting

Forest investigation : System components, natural events, and processes

Temporal Storage Sites

Tank for checking radioactive materials in the water seepage*

* The components indicated with a * will not be installed when soil and waste is stored for short periods of time at decontamination sites.

Dam lake investigation: sampling of bottom deposits and dam water

Water sampling (Heyroth sampling bottle)

Sampling of bottom deposits (Smith-Mcintyre Bottom sampler)

Core logging (undisturbed sampling)

Core logging (Gravity core sampler)

Testing of migration control: suspended solid in the stream PROJECT

23

