### УДК 534.8:537.84

# РАСПРОСТРАНЕНИЕ УЛЬТРАЗВУКА В ПОЛИДИСПЕРСНЫХ МАГНИТНЫХ ЖИДКОСТЯХ

### А. Н. Виноградов

#### (кафедра физической химии)

В работе получены выражения для скорости и коэффициента поглощения ультразвука в полидисперсных магнитных жидкостях. Приведены результаты обработки акустических спектров магнитной жидкости на основе додекана, измеренных в диапазоне частот 12 – 2000 МГц. Распределение частиц дисперсной фазы по размерам для исследуемой жидкости описывается функцией логарифмически нормального распределения. Определены основные характеристики этого распределения и концентрация частиц.

Для более широкого и эффективного применения магнитных жидкостей (МЖ) в различных областях науки и техники, а также для создания новых типов жидкостей с заданными свойствами и повышения их стабильности возникает необходимость в создании методов определения и контроля их физико-химических свойств. Свойства МЖ существенно зависят от числа, размеров и формы магнитных частиц.

По данным электронно-микроскопических исследований [1, 2] частиц магнетита, полученных химическим путем, отклонения формы частиц от сферической носят случайный характер. Поэтому при анализе влияния структуры МЖ на ее макроскопические свойства можно считать все частицы сферическими. Известно [2–5], что магнитное поле приводит к образованию агрегатов в магнитной жидкости, изменению их размеров и формы. При выключении магнитного поля агрегаты принимают сферическую форму.

В этой работе предлагается метод определения концентрации и размеров частиц дисперсной фазы из анализа экспериментальных данных по распространению ультразвука в МЖ. Система уравнений, описывающая распространение слабых возмущений в монодисперсной магнитной жидкости, приведена в работе [6]. Частицы дисперсной фазы рассматриваются как агрегаты, состоящие из магнитных частиц и поверхностно-активного вещества (ПАВ). В простейшем случае агрегат представляет собой магнитную частицу, покрытую стабилизирующей оболочкой ПАВ. Считается, что объемная концентрация агрегатов Г << 1 и они не взаимодействуют друг с другом. Средняя плотность  $\rho_a$  агрегатов определяется через плотности магнитных частиц  $\rho_m$  и ПАВ  $\rho_s$  и их объемные концентрации Г<sub>т</sub> и Г<sub>sm</sub> следующим образом:

$$\Gamma \rho_a = \Gamma_m \rho_m + \Gamma_{sm} \rho_s; \qquad \Gamma = \Gamma_m + \Gamma_{sm} \cdot \tag{1}$$

Дисперсионное уравнение относительно мнимой  $\alpha$  и действительной  $k_r$  частей волнового вектора  $k (k = k_r + j\alpha, \alpha << k_r)$  с учетом вязкости дисперсионной жидкости приведено в работе [7]. Из дисперсионного уравнения можно получить выражения для скорости распространения  $V = \omega / k_r$  и декремента затухания  $\delta = \alpha / k_r = \alpha \lambda / 2\pi$  ультразвука в магнитной жидкости ( $\alpha$  и  $\lambda$  - коэффициент поглощения и длина волны звука в МЖ;  $\omega = 2\pi f$ , f – частота генерируемых колебаний). При  $\omega \tau < 1$ ,  $\omega \tau_v << 1$ ,  $\Gamma \omega \tau \sim \omega \tau_v$  формулы для V и  $\delta$  с точностью до слагаемых, пропорциональных  $\Gamma$ , ( $\omega \tau$ )<sup>1/2</sup>,  $\omega \tau$ , ( $\omega \tau$ )<sup>3/2</sup> и  $\omega \tau_v$ , записываются следующим образом:

$$V^{2} = V_{0}^{2} \left( 1 + m \operatorname{ort} \frac{Q-1}{Q^{2} + W} \right); \qquad (2)$$
  

$$\delta = \frac{1}{2} m \operatorname{ort} \frac{Q}{Q^{2} + W} + \frac{1}{2} m \operatorname{ort} \frac{Sb \operatorname{ort}_{v}}{Q^{2} + W} + \frac{1}{2} \operatorname{ort}_{v}; 
m = \Gamma \frac{\left(\rho_{a} - \rho_{f}\right)^{2}}{\rho_{a} \rho_{f}}; \quad S = \frac{3}{2} \sqrt{\operatorname{ort}L} + \frac{1}{2} (L+2) \operatorname{ort}; 
Q = 1 + \frac{3}{2} \sqrt{\operatorname{ort}L}; \quad W = \frac{9}{4} \operatorname{ort}L + \frac{3}{2} (L+2) \operatorname{ort} \sqrt{\operatorname{ort}L}; 
L = \frac{\rho}{(1 - \Gamma)\rho_{a}}; \quad b = \frac{\rho_{a}^{2}}{(1 - \Gamma) \left(\rho_{a} - \rho_{f}\right)^{2}}; 
\tau = \frac{2}{9} \frac{R^{2}}{\eta_{f}} \rho_{eff};$$

$$\rho_{eff} = (1 - \Gamma) \frac{\rho_a \rho_f}{\rho} ; \tau_v = \left(\frac{4}{3}\eta_f + \zeta_f\right) \frac{1}{\rho V^2}$$

Здесь  $\tau$  – характерное время обмена импульсами между фазами; R – радиус агрегатов;  $\rho$  и  $\rho_f$  – плотность МЖ и дисперсионной жидкости;  $\eta_f$  и  $\zeta_f$  – первый и второй коэффициенты вязкости дисперсионной среды;  $V_f$  – скорость ультразвука в дисперсионной жидкости;  $V_0$  – равновесная скорость ультразвука в МЖ, когда параметр  $\omega \tau \rightarrow 0$ .

Отметим, что уравнения (2) для скорости и декремента затухания ультразвука в МЖ отличаются от соответствующих уравнений, приведенных в работе [7], так как они получены в более точном приближении.

Рассмотрим МЖ, в которой содержится k сортов агрегатов сферической формы с радиусами

$$R_1 \leq R_2 \leq \dots R_i \quad \dots \quad \leq \quad R_k \, .$$

Объем, занимаемый *i*-м сортом агрегатов в единице объема смеси, обозначим через  $\Gamma_i$ :

 $\sum_{i=1}^{k} \Gamma_{i} = \Gamma .$ 

Объемная концентрация дисперсионной фазы равна  $1 - \Gamma$ . Предположим, что средняя плотность  $\rho_a$  агрегатов не зависит от их размеров и определяется по соотношениям (1). Если  $\Gamma \ll 1$  и агрегаты не взаимодействуют друг с другом, тогда вклад в коэффициент поглощения ультразвука каждой дисперсной фазы пропорционален ее объемному содержанию  $\Gamma_i$ в смеси и параметру  $\omega \tau_i$ , зависящему от размера агрегата.

Уравнения для скорости и коэффициента поглощения (величины  $\alpha / f^2$ ) ультразвука в полидисперсной МЖ могут быть записаны в следующем виде:

$$V^{2} = V_{0}^{2} \left( 1 + Kf \sum_{i=1}^{k} \Gamma_{i} R_{i}^{2} \frac{Q_{i} - 1}{Q_{i}^{2} + W_{i}} \right); \qquad (3)$$

$$\frac{\alpha}{f^{2}} = \frac{\pi}{V} K \sum_{i=1}^{k} \Gamma_{i} R_{i}^{2} \frac{Q_{i} + S_{i} q_{3} \tau_{V} f}{Q_{i}^{2} + W_{i}} + \frac{2\pi}{V} \tau_{V}; \qquad (3)$$

$$K = \frac{4\pi (1 - \Gamma) \left(\rho_{a} - \rho_{f}\right)^{2}}{9\rho\eta_{f}}; \qquad Q_{i} = 1 + \sqrt{q_{1} R_{i}^{2} f}; \qquad (3)$$

$$S_{i} = \sqrt{q_{1}R_{i}^{2}f} + \frac{2}{9}q_{1}R_{i}^{2}f + q_{2}R_{i}^{2}f ; ;$$

$$W_{i} = q_{1}R_{i}^{2}f + \frac{4}{9}\sqrt{\left(q_{1}R_{i}^{2}f\right)^{3}} + 2q_{2}R_{i}^{2}f\sqrt{q_{1}R_{i}^{2}f} ; ;$$

$$q_{1} = \frac{\pi\rho_{f}}{\eta_{f}} ; q_{2} = \frac{4\pi(1-\Gamma)\rho_{a}\rho_{f}}{9\rho\eta_{f}} ; ;$$

$$q_{3} = \frac{4\pi\rho_{a}^{2}}{(1-\Gamma)\left(\rho_{a} - \rho_{f}\right)^{2}}$$

Пусть распределение объемной концентрации агрегатов по размерам в МЖ от  $R_{\min}$  до  $R_{\max}$  описывается функцией  $\gamma(R)$ . Тогда объем агрегатов в единице объема смеси  $\Gamma$  равен

$$\Gamma = \int_{R}^{R} \int_{M H} \Gamma(R) dR .$$

Функция  $p(R) = \gamma(R) / \Gamma$  – плотность распределения объемной концентрации агрегатов по размерам.

Переходя в формулах (3) для V и  $\alpha / f 2$  к пределу при  $k \to \infty$  и заменяя суммирование интегрированием, получим:

$$V^{2} = V_{0}^{2} \left( 1 + K \Gamma f \int_{R_{MHH}}^{R_{MAKC}} p(R) \frac{Q(R,f) - 1}{Q(R,f)^{2} + W(R,f)} dR \right); \quad (4)$$

$$\frac{\alpha}{f^2} = \frac{\pi}{V} K \Gamma \int_{R \text{ MHH}}^{R \text{ MAKC}} p(R) \frac{Q(R,f) + S(R,f)q_3\tau_v f}{Q(R,f)^2 + W(R,f)} dR + \frac{2\pi^2}{V} \tau_v.$$
(5)

Предположим, что распределение объемной концентрации агрегатов по размерам аппроксимируется функцией логарифмически нормального распределения, плотность p(R) которого задается формулой

$$p(R) = \frac{1}{\sqrt{2\pi\sigma R}} \exp\left[-\frac{(\ln R - m)^2}{2\sigma^2}\right], \quad R > 0.$$
 (6)

Здесь *т* и  $\sigma$  – параметры распределения, которые

| Т, <sup>0</sup> С | Г,%  | ρ, кг/м <sup>3</sup> | р <sub>а</sub> ,<br>кг/м <sup>3</sup> | ρ <sub>f</sub> ,<br>кг/м <sup>3</sup> | η <sub>f</sub> , cΠ | V <sub>0</sub> м/с | <i>—m</i> | σ     | s <sub>α</sub> ,<br>% | s <sub>V</sub> ,<br>% | <i>М</i> ·10 <sup>9</sup> ,<br>м | <i>D</i> ·10 <sup>9</sup> ,<br>м | µ.10 <sup>9</sup><br>м | N·10 <sup>-24</sup> ,<br>м <sup>-1</sup> |
|-------------------|------|----------------------|---------------------------------------|---------------------------------------|---------------------|--------------------|-----------|-------|-----------------------|-----------------------|----------------------------------|----------------------------------|------------------------|------------------------------------------|
| 0                 | 13.3 | 1137.3               | 3600                                  | 763.3                                 | 2.264               | 1187               | 18.800    | 1.027 | 5.9                   | 0.43                  | 11.60                            | 15.86                            | 2.38                   | 3.90                                     |
| 20                | 12.6 | 1118.2               | 3700                                  | 748.8                                 | 1.492               | 1125               | 19.000    | 1.000 | 4.7                   | 0.25                  | 9.24                             | 12.11                            | 2.06                   | 4.31                                     |
| 40                | 11.8 | 1099.0               | 3800                                  | 734.2                                 | 1.064               | 1066               | 19.119    | 0.982 | 7.4                   | 0.44                  | 8.06                             | 10.26                            | 1.90                   | 4.78                                     |
| 60                | 10.9 | 1079.9               | 4000                                  | 719.4                                 | 0.803               | 1003               | 19.240    | 0.959 | 7.6                   | 0.56                  | 6.98                             | 8.57                             | 1.76                   | 5.18                                     |

Основные характеристики магнитной жидкости на основе

додекана

могут принимать значения  $-\infty \le m \le \infty$ ;  $\sigma > 0$ . Математическое ожидание M, дисперсия D и мода  $\mu$ величины R равны:  $M = \exp(m + 0.5\sigma^2)$ ;  $D = \exp(2m + \sigma^2)(\exp\sigma^2 - 1)$ ;  $\mu = \exp(m - \sigma^2)$ .

Функция распределения агрегатов по размерам записывается следующим образом:

$$n(R) = \frac{3\Gamma}{4p} p(R) R^{-3}$$

Число агрегатов N в единице объема смеси, радиус которых заключен в пределах от  $R_{\min}$  до  $R_{\max}$ , равно

$$N = \frac{3\Gamma}{4p} \int_{R_{\text{MHH}}}^{R_{\text{MAKC}}} p(R) R^{-3} dR.$$

Для примера используем полученные в этой работе уравнения (4), (5) и (7) для определения параметров МЖ на основе додекана из акустических спектров [8], измеренных в диапазоне частот 12 - 2000 Мгц (эксперимент 2). Основные характеристики этой жидкости, необходимые для обработки акустических спектров, приведены в таблице. Численное интегрирование уавнений (4), (5) и (7) проводилось от  $R_{\min}$  $= 5 \cdot 10^{-10}$  м до  $R_{\text{max}} = 1 \cdot 10^{-6}$  м. Найденные значения параметров функции распределения т и о, средотклонения экспериментальных неквадратичные точек от расчетных для скорости  $s_{\alpha}$  и коэффициента поглощения s<sub>v</sub> звука приведены в таблице. В ней приведены также равновесное значение скорости ультразвука V<sub>0</sub> в магнитной жидкости, математическое ожидание M, дисперсия D и мода  $\mu$  величины R и число частиц N дисперсной фазы в единице объема смеси. На рис. 1, 2 и 3 представлены соответственно частотные зависимости скорости V и коэффициента поглощения (величины  $\alpha / f^2$ ) ультразвука и функция плотности распределения объемной концентрации частиц дисперсной фазы p(R) для исследуемой магнитной жидкости. Из таблицы и рис. 3 видно, что с ростом температуры значения M, D и  $\mu$  уменьшаются, а число агрегатов N увеличивается. Это может свидельствовать о том, что с ростом температуры происходит разрушение крупных агрегатов на более мелкие.



Рис. 1. Зависимость скорости ультразвука V от частоты f для МЖ на основе додекана для T, °C: 1 – 20, 2 – 60 (сплошные кривые рассчитаны по (4), точки соответствуют экспериментальным данным)



Рис. 2. Зависимость коэффициента поглощения ультразвука ( $a/f^2$ ) от частоты f для МЖ на основе додекана для T, °C: I - 20, 2 - 60 (сплошные кривые расчитаны по (5), точки соответствуют экспериментальным данным)

## СПИСОК ЛИТЕРАТУРЫ

- 1. Фертман В.Е. Магнитные жидкости. Минск, 1988.
- Peterson E.A., Krueger D.A. // J. Colloid. Interf. Sci. 1977. 62. P. 24.
- 3. *Krueger D.A.* // IEEE Transaction on Magnetics. 1980. 16. P. 251.
- Bacri J.C., Salin D., Massart R. // J. Phys. Lett. 1982. 6. P. L179.
- 5. Bacri J.C., Salin D. // J. Phys. Lett. 1982. 43. P. L649.



Рис. 3. Плотность распределения p(R) объемной концентрации частиц дисперсной фазы по размерам для МЖ на основе додекана, расчитанная по (6) для T, °C: 1 - 20, 2 - 60

- Гогосов В.В., Мартынов С.И., Цуриков С.Н., Шапошникова Г.А. // Магнит. гидродинамика. 1987. №2. С. 19.
- Виноградов А.Н., Гогосов В.В., Усанов А.А., Цуриков С.Н., Шапошникова Г.А. // Магнит. гидродинамика. 1989. №4. С. 29.
- 8. Виноградов А.Н., Гогосов В.В., Никольский Г.С., Усанов А.А., Цуриков С.Н. // Магнит. гидродинамика. 1992. №2. С. 19.

Поступила в редакцию 10.04.97