## УДК 539.143.43:541.182

# ДИНАМИКА ФОРМИРОВАНИЯ МЕЖФАЗНЫХ АДСОРБЦИОННЫХ СЛОЕВ ЖЕЛАТИНЫ НА ЖИДКИХ ГРАНИЦАХ РАЗДЕЛА

## Б.Н. Тарасевич, В.Н. Измайлова

(кафедра органической химии, кафедра коллоидной химии)

На основании экспериментальных данных по адсорбции желатины из ее водного раствора на границе раздела с жидкими неполярными фазами предложена качественная модель динамических процессов, приводящих к образованию межфазных адсорбционных слоев (MAC). Представлены величины толщин MAC, определенные методом нарушенного полного внутреннего отражения, проведена оценка величин коэффициентов диффузии и времен релаксации макромолекул MAC.

Межфазные адсорбционные слои (МАС) белков, образуются на границах раздела водный раствор белка – неполярная фаза (воздух). Исследования закономерностей динамики формирования межфазных МАС желатины актуальны по ряду причин теоретического и прикладного характера и включают различные направления. Существующие представления о реологических и структурно-механических свойствах МАС, развитые в ряде основополагающих работ [1–4], могут быть углублены на основе исследований динамики сгущения массы в межфазном слое, выполненных с использованием метода ИК-спектроскопии нарушенного полного внутреннего отражения (НПВО).

### Эксперименталная часть

В работе использовали фотографическую обессоленную желатину, очищенную по методу Леба [10], ее молекулярно-массовое распределение показано в табл. 1.

Предложенный и развитый нами экспериментальный подход к получению ИК-спектров межфазных адсорбционных слоев основан на их переносе с границы раздела жидких фаз на поверхность плоского оптического элемента внутреннего отражения методом, сходным с методом Ленгмюра–Блоджетт [7–10]. Физические основы и техника эксперимента спектроскопии нарушенного полного внутреннего отражения (НПВО) подробно изложены в [11–15].

Таблица 1

Распределение молекулярных масс желатины, определенное методом ВЭЖХ-хроматографии [5, 6]

| Молекулярная<br>масса | 2.69·10 <sup>3</sup> | 54.01·10 <sup>3</sup> | $144.54 \cdot 10^3$ | 891.22·10 <sup>3</sup> |
|-----------------------|----------------------|-----------------------|---------------------|------------------------|
| Количество, %         | 2.67                 | 58.31                 | 34.04               | 4.98                   |

В качестве основных аналитических полос в ИК-области выбраны полосы Амид А (3300 см<sup>-1</sup>) и Амид I (1660 см<sup>-1</sup>). Для проверки результатов, полученных методом НПВО, проведены эллипсометрические измерения толщин перенесенных слоев для одних и тех же образцов [9]. Несмотря на то что при проведении количественных оценок толщин перенесенных МАС приходится использовать некоторые допущения, полученные величины находятся в удовлетворительном согласии с результатами независимых измерений методом эллипсометрии. Наряду с представлением о геометрических и эффективных толщинах *d* (нм) на МАС [11] мы использовали и величины сгущения массы белка в межфазном слое Г (г/см<sup>2</sup>). Методы измерения реологических параметров МАС подробно изложены в монографии [2].



Рис. 1. Зависимости толщин МАС (*d* нм) и сгущения массы Г (г/см<sup>2</sup>) желатины на границах: *l* − водный раствор – четыреххлористый углерод, *2* − водный раствор – бензол (*T* = 20°С, концентрация желатины в воде 0.3 мас.%, pH 4.9)

#### Результаты и их обсуждение

На рис. 1 показаны примеры зависимостей  $d_{\rm ad}$  и Г от времени для границ водных растворов желатины с бензолом и четыреххлористым углеродом. Время достижения предельных значений адсорбции на жидких границах раздела фаз достигает нескольких часов. Длительность формирования МАС обусловлена следующими факторами: а) диффузией макромолекул и их агрегатов из объема водного раствора на границу раздела; б) энергетическим барьером процесса выхода макромолекул на поверхность раздела; е) поверхностной диффузией макромолекул; г) структурированием адсорбционного слоя белка с особыми реологическими свойствами. В табл. 2 представлены времена достижения максимальной адсорбции желатины по данным НПВО на разных границах раздела. В случае диффузионного механизма адсорбции из растворов для ряда систем [1] показана выполнимость уравнения:

$$\Gamma = 2 C_0 \sqrt{D \tau / \pi} ,$$

где D – коэффициент диффузии,  $\tau$  – время адсорбции,  $C_0$  – начальная концентрация белка в водной фазе. Из полученных временных зависимостей были определены величины коэффициентов диффузии макромолекул желатины для водного раствора. В среднем эта величина оказалась равной  $1.5 \cdot 10^{-10}$  см<sup>2</sup>/с. Это значение на два-три порядка ниже, чем те, которые можно было бы ожидать на

#### Таблица 2

Время достижения максимальной адсорбции (t, мин), предельные значения величин адсорбции (Г, г/см2) и толщин МАС (d, нм) желатины на границах раздела водного раствора желатины и неполярной фазы (концентрация желатины 0.3 г/100 мл, pH 4.9)

| Неполярная<br>фаза               | Темпе-<br>ратура,<br>°С | <i>t</i> , мин | Γ, г/см <sup>2</sup> | <i>d</i> , нм |
|----------------------------------|-------------------------|----------------|----------------------|---------------|
| Воздух                           | 20                      | 250            | 1.9                  | 15            |
| Бензол                           | 6                       | 50             | 2.8                  | 22            |
|                                  | 22                      | 180            | 2.6                  | 21            |
|                                  | 40                      | 110            | 2.1                  | 15            |
| Четырех-<br>хлористый<br>углерод | 6                       | 240            | 4.4                  | 34            |
|                                  | 22                      | 240            | 4.4                  | 34            |
|                                  | 40                      | 220            | 1.6                  | 12            |

основании расчетов по уравнению Марка-Куна-Хувинка [16-17]

$$D = K_D \cdot \mathbf{M}^{-b},$$

где  $K_D$  и b – постоянные.

Для исследуемого образца желатины с учетом массовово-весового распределения эти величины оказались в интервале  $5.1 \cdot 10^{-8} - 4.47 \cdot 10^{-7}$  см<sup>2</sup>/с. Полученные данные согласуются с выводом об агрегировании макромолекул желатины в водном растворе [4, 19].

Существенное отличие адсорбции макромолекул от адсорбции низкомолекулярных веществ возникает из-за большого числа конформаций, которые может принимать гибкая макромолекула как в объеме раствора, так и на границе раздела, а также по причине многоточечного закрепления макромолекулы [18]. Для высокомолекулярных ПАВ, к которым относятся белки, характерна полимолекулярная адсорбция, что может приводить к возникновению новой фазы и структурированию межфазного слоя ВПАВ. Эти и другие особенности позволяют расширить понятие адсорбции и говорить о межфазном сгущении массы адсорбата – межфазных адсорбционных слоях. На основе данных по сгущению массы желатины на каплях эмульсии бензола в воде [20], полученных независимым методом, был сделан вывод о том, что концентрация желатины в МАС соответствует концентрированному гелю, а толщина межфазного адсорбциониого слоя, находящегося непосредственно на границе раздела жидких фаз больше толщины перенесенного на поверхность элемента МНПВО слоя, как минимум, на 30-40%. Приближенные значения толщин МАС можно использовать для нормировки величин их реологических параметров.

Количественное описание динамики процесса «сгущения массы»  $\Gamma = f(t)$  можно проводить в координатах  $\ln[\Gamma_{\text{макс}} / (\Gamma_{\text{макс}} - \Gamma_{\tau})] - \tau$ . В этих координатах кинетические зависимости выражаются в виде прямых линий

$$k\tau = \ln[\Gamma_{\text{макс}} / (\Gamma_{\text{макс}} - \Gamma_{\tau})],$$

где k – константа скорости увеличения массы адсорбата на межфазной границе (с<sup>-1</sup>),  $\tau$  – время (с),  $\Gamma_{\tau}$  – адсорбция, достигаемая за время  $\tau$ . Возможность применения этого уравнения была показана при описании сгущения массы желатины (а также и других глобулярных белков) на поверхностях полимеров [21], что позволило вычислить константы скорости адсорбции  $k_{ad}$ , равные 0.072 – 0.132 с<sup>-1</sup> [7]. На основании измерений их температурных зависимостей в интервале 283–328 К были определены кажущиеся энергии активации  $E_{akt}$  образования МАС. Полученные эначения  $E_{akt}$  имеют порядок 11–14 кДж/моль для разных глобулярных белков и согласуются со значениями энергии активации разрушения МАС [22].

Использование уравнения Ребиндера [23]

$$\lg(\Gamma_{\infty} - \Gamma_{\tau}) = \lg(\Gamma_{\infty} - \Gamma_{0}) - (\tau/2.3 \cdot \Theta_{r}),$$



Рис. 2. Схематическое изображение процессов сгущения массы на границе раздела жидких фаз и образования межфазного адсорбционного слоя

где  $\Gamma_{\infty}$  и  $\Gamma_0$  – стационарные значения адсорбции при равновесии и в нулевой момент времени,  $\Gamma_{\tau}$  – адсорбция в данный момент,  $\Theta_r$  – время релаксации молекулы в адсорбционном слое, позволило рассчитать времена релаксации молекулы белка в процессе формирования МАС, составляющие в зависимости от условий 18–20 и 40–45 мин при 328 и 283 К соответственно [24]. Величины предельных напряжений сдвига достигают предельных значений за 4–10 ч. Такой разброс во времени можно объяс-

нить разными скоростями процессов массопереноса макромолекул белка (или их агрегатов) к границе раздела из объема раствора и образования упрочняющих слой межмолекулярных контактов, сопровождающегося ориентацией макромолекул. Оба процесса приводят к формированию МАС с характерным для структурированного геля набором реологических параметров [2]. Знание приближенных толщин МАС позволяет провести нормировку измеренных в разных условиях реологических параметров с целью их сопоставления. Кроме того, нормировка предельных величин напряжения сдвига на начальном этапе, когда толщина слоя не достигла своего предельного значения, позволяет получить скорректированные значения этой величины и угочнить форму изотермы адсорбции. Формирование межфазного слоя представляется как сложный процесс (рис. 2), включающий транспорт макромолекул белка или их агрегатов к поверхности раздела фаз, их закрепление на этой поверхности, ориентацию в соответствии с гидрофильно-гидрофобными взаимодействиями и балансом меж- и внугримолекулярных водородных связей, массоперенос в неполярную фазу [19] и, наконец, образование структурированного геля. Относительные скорости этих процессов, энергетические и энтропийные факторы зависят от природы несмешивающихся фаз, температуры и состава водной фазы, природы белка, конформационного состояния макромолекул.

Настоящая работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, грант 95-03-08-438а.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Измайлова В.Н., Ямпольская Г.П., Сумм Б.Д. Поверхностные явления в белковых системах, М., 1988.
- 2. Измайлова В.К., П.А.Ребиндер В.Н. Структуробразование в белковых системах. М., 1977.
- Izmailova V.N. // Progress in Surfase and Membrane Science. 1979. 13. P. 141.
- Измайлова В.Н., Деркач С.Р., Зотова К.В., Данилова Р.Г. // Коллоидный журнал. 1993. 55. С. 54.
- Завлин П.М., Нусс П.В., Овчинников А.Н., Сакварелидзе М.А., Ямпольская Г.П. //Журнал научной и прикладной фотографии. 1993. № 5. С. 51.
- 6. Завлин П.М., Нусс П.В., Овчинников А.Н., Сакварелидзе М.А., Ямпольская Г.П. // ЖПХ. 1993. 66. № 3. 616.
- 7. *Бусол Т.Ф.* Дис. ... канд. хим. наук. М., 1980.
- 8. Морозова Л.З. Дис. ... канд. хим. наук. М., 1986.
- Тарасевич Б.Н., Пшеницын В.И., Бусол Т.Ф., Измайлова В.Н.// Высокомолек. соединения. 1984. 26. С. 1106.
- Бусол Т.Ф., Письменная Г,М, Измайлова В.Н., Тарасевич Б.Н., Жеглецова С.К. // Коллоидный журнал. 1979. 41. С. 1055.
- Харрик Н. Спектроскопия внугреннего отражения. М., 1970. С. 334.
- 12. Кизель В.А. Отражение света. М., 1973. С. 361.

- Золотарев В.М., Лыгин Б.И., Тарасевич Б.Н.//Усп. хим. 1981. XLX. С. 24.
- Fahrenfort J., Visser W.M. // Spectrochim. Acta. 1962. 18.
  P. 1103.
- 15. Золотарев В.М. // Ж. прикл. спектр. 1967. 7. С. 286.
- 16. Маршелл Э. Биофизическая химия. М., 1981.
- 17. *Цветков В.Н., Эскин В.Е., Френкель С.Я.* Структура макромолекул в растворах. М., 1964.
- Адсорбция из растворов на поверхностях твердых тел / Под ред. Г. Парфита, К. Рочестера. М., 1986. С. 488.
- Левачев С.М., Измайлова В.Н. // Коллоидный журнал. 56. С. 193.
- 20. Измайлова В.Н., Туловская З.Д., Письменная Г.М., Ребиндер П.А. // Коллоидный журнал. 1972. **34**. С. 340.
- Lee R.G., Kim S.W. // J. Biomed. Mater. Res. 1974. 8.
  P. 251.
- 22. Ямпольская Г.П., Богачева Е.К., Измайлова В.Н. // Коллоидный журнал. 1982. 44. С. 1151.
- 23. *Трапезников А.А., Винс В.Г., Широкова Т.Ю.* // Коллоидный журнал. 1981. **43.** С. 322.
- Тарасевич Б.Н., Морозова Л.З., Измайлова В.Н., Новоселова М.А. // Коллоидный журнал. 1984. 46. С. 1191.