УДК 541.128.542.938.543.544.6:661.634

ИЗУЧЕНИЕ РЕАКЦИИ ЩЕЛОЧНОГО ГИДРОЛИЗА ФОСФОРСОДЕРЖАЩИХ ЭФИРОВ ИОННОЙ ХРОМАТОГРАФИЕЙ

Г.Г. Иванова, А.А. Иванов, О.А. Шпигун

(кафедра органической химии, кафедра аналитической химии)

На примере триэтилфосфата показано, что при ионохроматографическом определении происходит щелочной гидролиз эфира под действием противоионов анионита. Рассчитаны константы скорости реакции и оценена каталитическая активность некоторых анионитов.

Время гидролиза фосфорсодержащих эфиров измеряется минутами или еще большими периодами времени, поэтому для изучения кинетики этой реакции обычно применяется метод отбора проб [1], а затем проводится химический анализ состава пробы. Опубликованные сведения о степени устойчивости фосфор-эфирной связи были получены чаще всего ферментативными методами [2] определения активности эстеразы. Ферментативные методы имеют существенные технические и аналитические недостатки, а главное – они не отличаются субстатной специфичностью. Одновременное определение двух и более эфиров возможно лишь в том случае, если скорости гидролиза веществ достаточно различаются.

Использование для изучения гидролиза эфира радиохимических методов [3] обходится невероятно дорого, так как связано с синтезом и очисткой меченых соединений. Продуктами гидролиза эфиров при рН 7 являются обычно анионы, например (RO)₂POO⁻, (RO)₂PSO⁻, (RO)₂PSS⁻, разделение которых проводят с помощью ионообменной хроматографии [4, 5], используя в качестве элюентов растворы с возрастающей кислотностью. Когда рН элюента достигает значения рК фосфорсодержащей кислоты, последняя элюируется с анионообменника. После разделения фракции элюат анализируют каким-либо независимым аналитическим методом. В связи с этим время анализа продуктов гидролиза составляет несколько часов и даже дней [6]. Все чаще для изучения динамики разложения эфира [7] используют высокоэффективную жидкостную хроматографию (ВЭЖХ). Обязательными стадиями ВЭЖХ, лимитирующими время анализа [8], являются многократная экстракция веществ из воды органическими растворителями и очистка экстрактов на ионообменных или хелатообразующих сорбентах. Применение органических растворителей обеспечивает высокую чувствительность и селективность определения соединений методом ВЭЖХ, тогда как анализ водных проб вызывает трудности, связанные как с полнотой извлечения продуктов анионного характера, так и с высоким пределом их обнаружения. В аналитической химии последнее двадцатилетие отмечено появлением и развитием экспрессного метода определения ионов – ионной хроматографии (ИХ) [9]. Метод характеризуется высокой чувствительностью, селективностью и эффективностью определения анионов в воде без какой-либо предварительной подготовки пробы. ИХ успешно применяют для количественного определения [10] фосфорсодержащих кислот и их производных.

Цель настоящей работы – разработка методов использования ИХ для определения каталитической активности некоторых анионитов, а также для изучения реакции щелочного гидролиза фосфорсодержащих эфиров.

Методика эксперимента

Работу выполняли на ионном хроматографе «Цвет-3006» с кондуктометрическим детектором, приборная погрешность которого составляла не более 3-5 % [11]. При этом использовали металлические колонки 6×50, 6×100, 6×200 мм, заполненные соответственно нейтральным сорбентом Spheron-100000, поверхностно-привитым анионитом АНИЕКС (или ХИКС, или ОКА) в ОН-форме, катионитом Dawex 50W-х8 в Н-форме. Обменную емкость [12] анионита проверяли с помощью 0.1 М раствора хлорида натрия, приготовленного по точной навеске. Элюенты готовили растворением карбоната, гидрокарбоната или гидроксида натрия (или калия) в деионизованной воде. Скорость подачи элюента составляла 2 мл/мин, объем петлидозатора был равен 100 мкл. Реактивы, используемые в работе, имели квалификацию «о.с.ч.» или «ч.д.а.». Чистота эталонных фосфорсодержащих веществ подтверждена данными элементного анализа и физико-химическими показателями n_d, T_{пл}, T_{кип}. Для хроматографии готовили растворы фосфорсодержащих веществ в воде и в этаноле (0.7 – 1.0 г/л). Эталонные растворы хранили в темноте при температуре 3±1°С не более 5 дней. Модельные растворы хранили на свету при температуре 22±1°С. Изучая гидролиз вещества, из раствора отбирали две пробы, одна из которых была холостой, а к другой добавляли 0.2 М КОН при разных эквимолекулярных соотношениях (2/1, 1/ 3, 1/1, 1/2) вещества и щелочи. Содержание образовав-

Время, ч		МЭФ		ДЭФ					
	1	2	3	1	2	3			
0.005	0	0	0	18.0	7.0	2.8			
0.5	0	0	0	19.0	7.5	3.0			
20	6.5	4.4	1.1	20.0	8.0	3.2			
168	7.0	4.6	1.2	22.0	9.0	4.0			
360	8.0	5.0	1.3	29.0	10.0	5.0			

Содержание продуктов (мг/л), образовавшихся при гидролизе ТЭФ в присутствии анионита АНИ-ЭКС (1), сорбента Spheron (2) и в холостом опыте (3)

шихся продуктов определяли через 30 с, 30 мин и через 1-5 ч, потом анализ проводили 1-2 раза в день. Пробы хранили на свету при температуре 22±1°С. Определяемые в пробе компоненты идентифицировали методом [13] по временам удерживания эталонных соединений, а их содержание рассчитывали по высотам (или площадям) пиков. Суммарная погрешность эксперимента согласно методикам [13-16] включала: а) погрешность прибора, рассчитанную по высотам (площадям) пиков и по времени удерживания вещества; б) погрешность измерения объема щелочи и погрешность измерения времени гидролиза; в) погрешность приготовления эталонных растворов фосфорсодержащих соединений для градуировочных графиков. В результате суммарная погрешность эксперимента не превышала 6 % ($S_{\nu}=S_{\nu}+S_{\nu}+S_{\nu}=0.013+0.029+0.012=0.059$). Правильность определения подтверждена методом изотопного разбавления [17]. Сходимость результатов определения продуктов гидролиза из одной пробы достаточно высока ($S_r \le 0.03$).

Результаты и их обсуждение

Ранее [10] на примере трипропилфосфата было показано, что в условиях двухколоночной ИХ, когда разделение компонентов проводят на колонке, заполненной поверхностно-привитым сорбентом [9] низкой обменной емкости (10⁻¹-10⁻² мэкв/мл) в ОН-форме, т.е. на анионообменнике, происходит количественный гидролиз триэфира. При этом вторая колонка (подавляющая) является катионообменником, представляющим собой полностью сульфированный сорбент [4, 18-20] высокой обменной емкости (1.7 мэкв/мл) в Н-форме. В качестве элюентов используют основные (рН > 8) растворы концентрацией 10⁻³ М, например растворы карбоната, гидроксида, гидрокарбоната натрия или их смеси. Таким образом, с помощью двухколоночной ИХ можно проводить косвенное определение эфиров по продуктам гидролиза. Основной вклад в ускорение гидролиза эфира вносит гидроксильная форма сорбента. Каталитически активные противоионы ОН находятся в анионите в сольватированном состоянии и в этом отношении напоминают так называемые свободные ионы ОН в обычном растворе основания. Подобно гидроксильным ионам в растворе противоионы анионообменника катализируют гидролиз эфира. Фактически, в условиях двухколоночной ИХ имеет место гетерогенный катализ на анионите [4, 5, 18-21], представляющий собой частный случай специфического основного катализа [22, 23] в гомогенной среде. Именно поэтому гидролиз эфира под действием противоионов анионита может протекать по бимолекулярному S_N2 механизму [3, 24, 25]. В этом случае реакции гомогенного и гетерогенного катализа совпадают по кинетике, но существенно различаются скоростью протекания. Другое отличие гетерогенного катализа в растворе от истинно гомогенного состоит в том, что химическая реакция происходит внутри пор сорбента, т.е. связана с диффузией [4, 5, 20, 26-28] исходного вещества в анионит, а продуктов реакции из него. Кроме того, полимерная матрица и фиксированные ионы сорбента могут влиять на скорость реакции.

В статических условиях каталитическое действие сорбентов АНИЕКС и *Spheron-100000* на скорость гидролиза эфира изучали в течение 360 ч, периодически перемешивая сорбент в водном растворе триэтилфосфата (ТЭФ). Для ионохроматографического определения образовавшихся продуктов из раствора отбирали пробу объемом 0.5 мл, каждый раз добавляя к суспензии сорбента столько же воды. Концентрация ТЭФ в растворе с сорбентом и без сорбента (холостом опыте), а также в эталонном растворе эфира была примерно одинаковой 0.71–0.75 г/л с учетом разбавления пробы, что позволило определять продукты гидролиза без изменения чувствительности прибора. Согласно [28], нами учитывалось изменение концентрации ТЭФ, происходящее в результате отбора проб. Количество сорбента в суспензии составляло 1 г, что соответствовало количеству сорбента в разделяющей колонке 6×100 мм, используемой при ионохроматографическом определении эфира. Результаты определения содержания образовавшихся при гидролизе ТЭФ продуктов приведены в табл. 1, откуда видно, что присутствие нейтрального сорбента *Spheron* и анионита АНИЕКС ускоряло гидролиз ТЭФ по сравнению с холостым опытом.

Нейтральный сорбент Spheron-100000 представляет собой немодифицированный гель на основе сополимера оксиэтилметакрилата с этилендиметакрилатом, содержащий реактивные группировки первичных спиртов, что позволяет его модифицировать путем полимераналогичных превращений. Например Spheron E-300 представляет собой 1,2-эпоксипропилпроизводное оксиэтилметакрила и является модифицированным гелем. Содержание эпоксидных групп в этом геле составляет 0.3±0.1 ммоль/г. На его основе получают [11] поверхностно-привитый сорбент АНИЕКС, в структуре которого одновременно с гидроксильными группами (противоионами) присутствуют оксирановые группы модифицированного геля. Анионит АНИЕКС ускоряет гидролиз ТЭФ сильнее, чем нейтральный сорбент Shperon, хотя последний тоже ускоряет реакцию по сравнению с холостым опытом.

Мерой каталитической активности [28, 29] считается удельная (на единицу поверхности) скорость или, что то же самое, константа скорости исследуемой реакции. В со-

ответствии с принципом независимости элементарных реакций [22, 29], а также потому, что в статическом и холостом опытах гидролиз ТЭФ протекал при тысячекратном избытке воды, исследуемую реакцию рассматривали [24, 30] как необратимую псевдомолекулярную реакцию, состоящую из последовательных стадий образования ДЭФ и МЭФ. На основании опытных данных были построены зависимости логарифма текущей концентрации (lgC_z) определяемого компонента от времени (τ) для МЭФ и ДЭФ. Экспериментальные точки удовлетворительно укладывались на прямые линии. В статическом опыте угловые коэффициенты наклона прямых линий для МЭФ и ДЭФ составляли 3.5·10⁻³ и 2.6·10⁻² (АНИЕКС), 2.3·10⁻³ и 4.8·10⁻² (Spheron), $4.1 \cdot 10^{-3}$ и $3.2 \cdot 10^{-2}$ (холостой опыт) и были использованы для расчета [24] кажущихся констант скорости (\overline{k}) . В статическом опыте с анионитом константа скорости (мин⁻¹) по МЭФ и ДЭФ составляла 8.1·10⁻³ и 5.9·10⁻² (АНИЕКС), 5.2·10⁻³ и 1.1·10⁻² (Spheron), 9.4·10⁻³ и 7.3·10⁻² (холостой опыт). Выполнение первого порядка элементарных реакций проверили для других исходных концентраций ТЭФ (0.81 и 0.93 г/л) и установили, что для них значения констант тоже сохраняются. Затем, исходя из экспериментальных данных по содержанию ДЭФ и МЭФ, с помощью уравнения материального баланса рассчитали [29-30] константы скорости, решая систему линейных дифференциальных уравнений с постоянными коэффициентами. Среднее значение \overline{k} (мин⁻¹) для МЭФ и ДЭФ составляло 8.9·10⁻³ и 6.4·10⁻² (АНИЕКС), 6.2·10⁻³ и 1.1·10⁻²

Таблица 2

Содержание продуктов (мг/л), образовавшихся при гидролизе ТЭФ в динамическом опыте: 1 – фракция без щелочи, 2 – фракция со щелочью, 3 – холостой опыт

	МЭФ					ДЭФ								
Время, ч	АНИЭКС		Spheron		Amberlite		АНИЭКС		Spheron		Amberlite			
	1	2	1	2	1	2	3	1	2	1	2	1	2	3
0.05	0	0	0	0	0	0	0	31	71	17	30	35	75	28
0.5	0	0	0	0	0	0	0	32	76	17	32	37	78	29
20	10	19	0	0	7	20	0	38	80	18	39	43	87	35
100	11	24	5	8	12	30	7	74	129	20	68	66	103	61
168	12	30	6	10	15	56	8	123	229	24	109	100	180	105
250	19	44	7	13	30	89	10	228	369	29	161	190	237	156
360	32	73	12	34	62	130	14	544	744	42	273	279	363	261

(Spheron), 1.1·10⁻³ и 8.2·10⁻² (холостой опыт). Вычисленные значения k удовяетворительно совпадали с константами, полученными графическим путем. Заметим, что значения k рассчитаны по изменению содержания МЭФ и ДЭФ, а не по изменению содержания ТЭФ, т.е. константы имеют отрицательные значения, поэтому следует сравнивать их абсолютные величины. При этом видно, что в опытах с сорбентами значения k были примерно в 1.5 раза больше, чем в холостом опыте. Очевидно, что во столько же раз каталитическая активность сорбентов была больше каталитической активности щелочи. В свою очередь каталитическое действие анионита обусловлено наличием гидроксильных групп и оксирановых групп полимерной матрицы, тогда как действие нейтрального сорбента связано только с природой матрицы. В опытах с сорбентами сходимость констант скорости была хуже, чем в холостом опыте, поскольку при периодическом перемешивании равновесное состояние не достигается из-за медленной диффузии раствора внутрь пор сорбента.

Гидролиз ТЭФ изучали в динамических условиях. Для этого раствор ТЭФ (0.93 г/л) пропускали с помощью насоса через хроматографическую колонку, заполненную 1 г сорбента и отбирали две пробы (по 15 мл каждая). К одной из полученных проб и к 15 мл исходного раствора ТЭФ (холостой опыт) добавляли щелочь при соотношении ТЭФ/КОН = 1/1. Затем в течение 360 ч определяли содержание МЭФ и ДЭФ, образовавшихся в пробах. Результаты определения приведены в табл. 2.

Зависимость логарифма текущей концентрации продуктов гидролиза ТЭФ от времени: 1, 2 – МЭФ, 3, 4 – ДЭФ

Как видно из табл. 2, гидролиз эфира изучали не только на сорбенте Spheron и анионите АНИЕКС, но и на полностью привитом сильноосновном анионите Amberlite IRA-400 [4]. Расчет обменной емкости [4, 11] анионитов как удельной характеристики количества гидроксильных групп, усредненной по объему сорбента в колонке, показал, что емкость анионита Amberlite была в 6 раз больше, чем анионита АНИЕКС, между тем содержание продуктов гидролиза, образовавшихся в опыте с АНИЕКС, было выше, чем в опыте с Amberlite. Из-за высокого содержания каталитически активных гидроксильных ионов гидролиз ТЭФ на поверхности зерен анионита Amberlite проходит [27, 28] быстрее диффузии эфира внутрь зерен. Поры сорбента содержат в основном продукты реакции, а концентрация ТЭФ уменьшается по направлению к слоям зерен сорбента. В результате медленной диффузии часть противоионов внутри зерен остается в бездействии (не проявляет каталитической активности). АНИЕКС относится к поверхностно-привитым (пелликулярным) [11] сорбентам. Тонкий анионообменный слой и низкая обменная емкость анионита обеспечивают доступ эфира ко всем противоионам внутри зерен и быстрый массоперенос продуктов реакции. Ускорение реакции происходит и за счет оксирановых групп полимера. Несомненно, что каталитическое действие сорбентов сводится к электростатическому и гидрофобному эффектам, приводящим к образованию комплекса переходного состояния [21, 23], обладающего пониженной энергией активации, с последующим распадом на продукты реакции. Полагаем, что именно поэтому содержание МЭФ и ДЭФ во фракции 2 (при добавлении щелочи) увеличивалось в 2-3 раза по сравнению с их содержанием во фракции 1 (без щелочи) (табл. 2). Полученные результаты подтверждали литературные сведения о том, что скорость гидролиза существенно зависит от того, вводится ли определенное количество каталитически активных ионов ОН в виде раствора щелочи или же в виде анионита, активность которого в свою очередь зависит от строения, полимерной матрицы и обменной емкости анионита.

Расчет [22, 24, 28, 30] констант скорости гидролиза ТЭФ в динамических условиях проводили двумя способами аналогично расчету \overline{k} гидролиза эфира в статических условиях. Зависимости $\lg C_{\tau}$ от τ для МЭФ и ДЭФ приведены на рисунке, где прямые линии l и 3 соответствуют холостому опыту, а линии 2 и 4 – опыту с анионитом АНИЕКС (без щелочи).

Рассчитанные графическим путем константы скорости (мин⁻¹) для МЭФ и ДЭФ составили: во фракциях 1 – $5.8\cdot10^{-2}$ и $1.3\cdot10^{-1}$ (АНИЕКС), $8.9\cdot10^{-2}$ и $9.7\cdot10^{-2}$ (*Amberlite*); во фракциях 2 – $6.0\cdot10^{-2}$ и $1.1\cdot10^{-1}$ (АНИЕКС), $1.9\cdot10^{-1}$ и $7.4\cdot10^{-2}$ (*Amberlite*); $9.4\cdot10^{-2}$ и $1.6\cdot10^{-1}$ (холостой опыт). Решая систему дифференциальных уравнений, получили для

МЭФ и ДЭФ следующие значения \overline{k} (мин⁻¹): в опыте с АНИЕКС – 6.5·10⁻² и 1.4·10⁻¹ (фракция 1), 5.2·10⁻² и 1.2·10⁻¹ (фракция 2), в холостом опыте – $9.4 \cdot 10^{-2}$ и $1.5 \cdot 10^{-1}$, в опыте с *Amberlite* $-8.9 \cdot 10^{-2}$ и $1.2 \cdot 10^{-1}$ (фракция 1), $9.0 \cdot 10^{-2}$ и 9.1.10⁻² (фракция 2). Воспроизводимость результатов лучше в холостом опыте и в опыте с анионитом АНИЕКС, чем в опыте с анионитом Amberlite (среднее значение S_r составляло соответственно 0.07, 0.08, 0.13). Сопоставляя значения k, можно сравнить каталитическую активность анионитов между собой и с активностью ионов ОН в холостом опыте. Каталитическая активность АНИЕКС была в примерно 1.4 раза больше активности Amberlite и в 1.5 раза больше активности ионов ОН. Сопоставление результатов всех опытов методом наименьших квадратов на ЭВМ позволило убедиться, что полученные значения kсовпадают в пределах разброса экспериментальных точек, $(S_r \leq 0.02).$

Между динамическим и хроматографическим способами нет существенного различия, поскольку оба способа основаны на процессах с однократными (динамический способ) и с многократными (хроматографический способ) элементарными сорбционно-десорбционными актами, в результате которых происходит щелочной гидролиз ТЭФ. Основным различием между динамическим и

СПИСОК ЛИТЕРАТУРЫ

- Экспериментальные методы химической кинетики. М., 1985.
 С. 371.
- О'Брайн Р. Токсичные эфиры кислот фосфора. М., 1964. С. 48, 409.
- Использование радиоактивности при химических исследованиях. М., 1954. С. 43.
- 4. Гельферих Ф. Иониты. Основы ионного обмена. М., 1962.
- Сенявин М.М. / Ионный обмен и его применение. 1959. С. 134, 105.
- 6. Plapp F.M., Cassida J.E. // Anal. Chem. 1959. 30. P. 1622.
- Horner L.M., Cowele J.E., White D.E. et al // J. Agr. and Food Chem. 1994. 42. P. 1795.
- Высокоэффективная жидкостная хроматография в биохимии. М., 1988. С. 100.
- Фритц Дж., Гфьерде Д., Поланд Х. Ионная хроматография. М., 1984. С. 61, 119.
- 10. Иванова Г.Г., Иванов А.А., Кашин А.Н. // ЖАХ. 1996. **51.** С. 570.
- 11. Долгоносов А.М., Сенявин М.М., Волощик И.Н. Ионный обмен и ионная хроматография. М., 1993. С. 53, 92.
- 12. Тростянская Е.Б. // Ионный обмен и его применение. М., 1959. С. 25.
- 13. Долманова И.Ф., Дорохова Е.И., Гармаш А.В. Метрологические основы химического анализа. М., 1993. С. 18, 27.
- 14. *Налимов В.В.* Применение математической статистики при анализе веществ. М., 1960. С. 52.
- Костюковский М.М. / Кинетика гетерогенных каталитических реакций. Методические вопросы кинетики. Черноголовка, 1988. С. 33.

хроматографическим способами является их назначение. Динамический способ следует рассматривать [5] как средство решения задачи суммарного поглощения компонентов смеси, а хроматографический способ – как средство решения задачи разделения смеси. Кроме того, в динамическом способе имеет место ламинарное течение, тогда как при непрерывном процессе в колонке с анионитом ламинарное течение становится турбулентным. Турбулентное течение, как известно, обладает повышенной способностью к ускорению химических реакций, в частности щелочного гидролиза эфира в условиях двухколоночной ИХ. При разделении компонентов по механизму ионообменной сорбции в хроматографической системе (анионообменник + катионообменник) устанавливается стационарное состояние, при котором содержание продуктов гидролиза не меняется со временем. Компоненты сорбируются и вымываются независимо друг от друга. В конечном счете, справедливо утверждать, что определение фосфорсодержащих эфиров двухколоночной ИХ основано на их способности в присутствии гидроксильных ионов сорбента и основного (pH > 8) элюента гидролизоваться до соответствующих кислот. Используя метод ИХ, можно изучать кинетику гидролиза фосфорсодержащих кислот и их производных.

- 16. Спиридонов В.П., Лопаткин А.А. Математическая обработка физико-химических данных. М., 1970. С. 70.
- 17. Фридлендер Г., Кеннеди Дж. Введение в радиохимию. М., 1952. С. 294.
- 18. Ионный обмен. М., 1951.
- 19. Осборн Г. Синтетические ионообменники. М., 1964.
- *Грисбах Р.* Теория и практика ионного обмена. М., 1963.
 С. 76, 397, 436.
- 21. Бектуров Е.А., Кудейбергенов С. Катализ полимерами. Алма-Ата, 1988.
- Эмануэль Н.М., Кнорре Д.Г. Курс химической кинетики. С. 1962.
- 23. *Хофман Р.В.* Механизм химических реакций. М., 1979. С. 42, 253.
- 24. Эмануэль Н.М., Кнорре Д.Г. Курс химической кинетики. 1984.
- 25. *Марк Г., Рехниц Г.* Кинетика в аналитической химии. М., 1972. С. 170.
- 26. Ионный обмен / Под ред. Я.М. Маринского. М., 1968. С. 76.
- 27. Полянский Н.Г. // Успехи химии. 1962. **31.** С. 1046.
- 28. Полянский Н.Г. Катализ ионитами. М., 1973.
- 29. Семиохин И.А., Страхов Б.В., Осипов А.И. Кинетика химических реакций. М., 1995.
- Брей Дж., Уайт К. Кинетика и термодинамика биохимических процессов. М., 1959. С. 18.

Поступила в редакцию 11.02.97