ФИЗИЧЕСКАЯ ХИМИЯ

УДК 539.27

ОПРЕДЕЛЕНИЕ СТРУКТУРЫ МОЛЕКУЛЫ 4-БРОМБЕНЗАЛЬДЕГИДА ПУТЕМ СОВМЕСТНОГО ИСПОЛЬЗОВАНИЯ ДАННЫХ ЭЛЕКТРОНОГРАФИИ И НЕЭМПИРИЧЕСКИХ РАСЧЕТОВ

Т. Странд*, М. А. Тафипольский, Л. В. Вилков,

Х. В. Волден* (кафедра физической химии)

Определена структура молекулы 4-бромбензальдегида в газовой фазе на основе анализа данных газовой электронографии и неэмпирических расчетов, выполненных в базисе ХФ/6-311ГФ**. Установлена плоская конфигурация молекулы симметрии C_s . Получены следующие значения основных геометрических параметров: (C-C)_{ср} = 1.395(2) Å; C-Br = 1.891(3) Å; C-C(=O) = 1.499(13) Å; C-O = 1.216(10) Å; <CC_{Br}C = 121.2(2)°; <CC_{CHO}C = 121.5(9)°. Получено гармоническое силовое поле для молекулы 4-бром-бензальдегида.

Настоящая работа является продолжением наших исследований, посвященных изучению влияния альдегидной группы на длины связей углерод-фтор [1] и углерод-хлор [2] через бензольное кольцо, а также ее взаимодействия с самим бензольным кольцом. При исследовании пара-фторбензальдегида было установлено, что длина связи C-F сокращается под влиянием альдегидной группы на 0.01Å [1] по сравнению с фторбензолом. Длина связи C-Cl, найденная при изучении пара-хлорбензальдегида [2], с высокой точностью совпадает с длиной связи углерод-галоген в хлорбензоле. В данной работе исследован пара-бромбензальдегид. Поскольку некоторые длины связей в молекуле пара-бромбензальдегида имеют близкие значения, были использованы данные квантовохимического расчета этой молекулы.

Квантовохимический расчет

Нумерация атомов молекулы 4-бромбензальдегида приведена на рис. 1. Расчеты *ab initio* были выполнены с помощью пакета программ ГАУССИАН-94 [3] в базисе $X\Phi/6-311\Gamma\Phi^{**}$. Проведена полная оптимизация геометрии молекулы в рамках симметрии C_s. Полученные структурные параметры приведены в табл. 1. Для определения барьера внутреннего вращения альдегидной группы относительно бензольного кольца проведена дополнительная оптимизация геометрии молекулы для четырех значений угла вращения (C₂C₁C₁₂O₁₃) в интервале от 0 до 90 град с шагом 30 град. Минимум на потенциальной поверхности соответствует такой геометрии, когда альдегидная группа и бензольное кольцо лежат в одной плоскости (рис. 1). Максимум на потенциальной поверхности соответствует такой геометрии, когда плоскости альдегидной группы и бензольного кольца ортогональны (угол вращения равен 90 град). Для величины барьера найдено значение 37 кДж/моль. Для молекулы 4-бромбензальдегида симметрии С_s рассчитано гармоническое силовое

Рис. 1. Нумерация атомов в молекуле 4-бромбензальдегида.

^{*}Химический факультет, Университет г. Осло, 1033, Блиндерн, N-0315, Осло, Норвегия.

Таблица 1

Химическая связь	Длина связи, Å	Угол	Величина угла, град
C ₁ -C ₂	1.3906	<c<sub>6-c₁-c₂</c<sub>	119.72
C ₂ -C ₃	1.3789	$< C_1 - C_2 - C_3$	120.31
C ₃ -C ₄	1.3874	$< C_2 - C_3 - C_4$	119.06
C ₄ -C ₅	1.3808	<c3-c4-c2< td=""><td>121.55</td></c3-c4-c2<>	121.55
C ₅ -C ₆	1.3852	$< C_4 - C_5 - C_6$	118.74
C ₆ -C ₁	1.3848	<c5-c6-c1< td=""><td>120.62</td></c5-c6-c1<>	120.62
С2-Н7	1.0739	$< C_3 - C_4 - Br_9$	119.17
С3-Н8	1.0729	$< C_5 - C_4 - Br_9$	119.28
C ₅ -H ₁₀	1.0727	$< C_2 - C_1 - C_{12}$	120.30
C ₆ -H ₁₁	1.0763	$< C_6 - C_1 - C_{12}$	119.98
C ₄ -Br ₉	1.8979	$< C_1 - C_{12} - O_{13}$	124.37
C ₁ -C ₁₂	1.4856	$< C_1 - C_{12} - H_{14}$	114.88
C ₁₂ -O ₁₃	1.1836	$<0_{13}-C_{12}-H_{14}$	120.75
С ₁₂ -Н ₁₄	1.0963		

Квантовохимический расчет геометрии для 4-бромбензальдегида в базисе ХФ/б-311ГФ** (длины связей в Å, углы в град)

Рис. 2. Экспериментальные и теоретические молекулярные интенсивности рассеяния и их разностные кривые для 4-бромбензальдегида

Рис. 3. Экспериментальная и теоретическая кривые радиального распределения и их разностная кривая для 4-бромбензальдегида

Таблица 2

Структурные параметры молекулы 4-бромбензальдегида (rg) (длины связей в Å, углы в град)

Параметр	$r_{\rm g}$ ($\angle_{\rm a}$)	$u_{ m 2 K C II}$	u_{reop}
	Независиые	параметры	
C ₁ -C ₂	$1401(2)^{a}$	0.040(5)	0.047
$\Delta C_2 C_3$	$[-0.012]^{b}$	-	-
$\Delta C_3 C_4$	[-0.004]	-	-
$\Delta C_4 C_5$	[-0.010]	-	-
$\Delta C_5 C_6$	[-0.006]	-	-
$\Delta C_6 C_1$	[-0.006]	-	-
C_{Λ} -Br _Q	1.891(3)	0.051(7)	0.051
$C_{1} - C_{12}$	1.499(13)	0.042(5)	0.049
$C_{12} - O_{13}$	1.216(10)	0.031(5)	0.038
(C-H) _{cp}	1.102(10)	0.086(20)	0.077
$\Delta C = O H$	[0.022]	-	-
$\langle c_3 c_4 c_5 \rangle$	[-1, 2]		
$\Delta c_1 c_2 c_3$	[-2,5]	_	_
$(2^{\circ}3^{\circ}4)$	119.2(20)	_	_
$$	119.2(20) 125.3(20)		
$< C_{1} - C_{12} - O_{13}$	[114 9]	_	_
1 °12 °14	 		
	1 280(2)	о 040(5)	0.047
$c_2 - c_3$	1.369(2)	0.040(5)	0.047
$c_3 - c_4$	1.397(2)	0.041(5)	0.048
$c_4 - c_5$	1.391(2)	0.040(5)	0.047
C ₅ -C ₆	1.395(2)	0.040(5)	0.047
$C_6 - C_1$	1.395(2)	0.040(5)	0.047
С ₁₂ -н ₁₄	1.125(10)	0.090(20)	0.080
<c<sub>6-C₁-C₂</c<sub>	121.5(9)	-	-
$< C_1 - C_2 - C_3$	120.0(2)	-	-
<c2<sup>-c3-c4</c2<sup>	118.7(2)	-	-
<c4-c5-c6< td=""><td>120.6(9)</td><td>-</td><td>-</td></c4-c5-c6<>	120.6(9)	-	-
<c5-c6-c1< td=""><td>118.1(12)</td><td>-</td><td>-</td></c5-c6-c1<>	118.1(12)	-	-
C ₁ C ₃	2.416(4)	0.067(4)	0.056
C ₂ C ₁₂	2.503(25)	0.077(4)	0.077
C ₁ O ₁₃	2.416(14)	0.070(4)	0.059
C ₁ C ₄	2.760(9)	0.074(4)	0.064
C ₃ Br ₉	2.850(4)	0.081(4)	0.080
C ₁ Br ₉	4.649(10)	0.098(20)	0.067
C ₄ C ₁₂	4.258(11)	0.095(9)	0.070
C ₂ Br ₉	4.142(4)	0.093(9)	0.068
C ₁₂ Br ₉	6.148(12)	0.115(20)	0.073
О ₁₃ Вr ₉	6.918(16)	0.130(20)	0.097
C ₁₂ C ₃	3.781(20)	0.088(20)	0.066

 $\stackrel{a}{b}$ Величина в скобках: $\sigma = [(2\sigma(MHK))^2 + (0,001r)^2]^{1/2}$ (см. текст). Параметры в квадратных скобках не уточнялись.

Таблица З

Параметр	C ₆ H ₅ Br [10]	C ₆ H ₅ CHO [11]	<i>n</i> -BrC ₆ H ₄ CHO	n-BrC ₆ H ₄ NO ₂ [12]
			[настоящая работа]	
(C–C) _{cp}	1.396(3)	1.397(3)	1.395(2)	1.399(3)
C–Br	1.899(3)	_	1.891(3)	1.897(6)
C=O	-	1.212(3)	1.216(10)	_
C-C(=O)	-	1.479(4)	1.499(13)	-
<cc<sub>BrC</cc<sub>	121.4(6)	-	121.2(2)	122.6(6)
<cc<sub>CHOC</cc<sub>	-	119.9(7)	121.5(9)	-
<cc<sub>NO2C</cc<sub>	-	-	-	121.6(6)

Сравнение некоторых структурных параметров (r_g) в производных бензола (длины связей в Å, углы в град)

поле, использованное далее для расчета ее колебательных характеристик.

Нормально-координатный анализ

Выбор внутренних координат молекулы 4-бромбензальдегида показан на рис. 2 в работе [1]. Данный набор был преобразован в набор координат симметрии, приведенный в табл. 2 работы [1]. Так как точечной группой симметрии данной молекулы является С, то ее 36 нормальных колебаний разбиваются на 2 блока: $\Gamma = 25A' + 11A''$. Рассчитанное *ab initio* силовое поле молекулы было масштабировано по методу, предложенному в работе [4], с использованием масштабирующих множителей, полученных в работе [1]. Для этого была использована программа ASYM40 [5]. С использованием полученного гармонического силового поля молекулы были рассчитаны среднеквадратичные амплитуды колебаний (u) и поправки на перпендикулярные колебания (К) для всех пар атомов в молекуле при температуре электронографического эксперимента $T = 105^{\circ}$ С. При расчете колебательных характеристик для расстояний, зависящих от вращения альдегидной группы, была учтена их зависимость от угла внутреннего вращения.

Экспериментальная часть

Электронограммы были получены на приборе «Balzers Eldigraph KDG-2» [6] университета г. Осло (Норвегия) при двух значениях расстояний сопло – пластинка: 498.81 (6 электронограмм) и 248.81 мм (6 электронограмм). Температура эксперимента составляла 105°, длина волны электронов – 0,058625 Å. В качестве микроденситометра использовали сканер «Agfa Arcus II». Данные по интенсивности рассеяния рассчитывали с помощью пакета программ, написанных Т. Страндом [7]. Таблицы амплитуд и фаз рассеяния взяты из работы [8]. Молекулярные составляющие рассеяния, полученные проведением линии фона на экспериментальных кривых интенсивностей, приведены на рис. 2.

Структурный анализ

Структурный анализ проводили с помощью программы КСЕD26 [9]. Из-за сильных корреляций между некоторыми структурными параметрами в работе были использованы следующие ограничения:

1. Все связанные расстояния С–С в бензольном кольце были приняты различными, и различия между ними фиксировались с использованием их значений из расчетов *ab initio*.

2. Все связанные расстояния С–Н в бензольном кольце были приняты одинаковыми, а разница между длинами связей С–Н в кольце и в альдегидной группе фиксировалась с использованием ее значения из расчетов *ab initio*.

3. Величины углов в бензольном кольце $C_1C_2C_3$, $C_2C_3C_4$ и $C_3C_4C_5$ уточняли с учетом их разницы, взятой из квантовохимического расчета.

4. Для величин углов ССН были приняты расчетные значения.

5. Угол CCBr вычисляли как угол между продолжением биссектрисы угла $C_3C_4C_5$ и связью C_4C_5 .

Внутреннее вращение альдегидной группы относительно бензольного кольца описывали как движение большой амплитуды, при этом потенциал задавали в параметрической форме в виде:

 $V(\phi) = 0.5 V_2 (1 - \cos 2\phi),$

где ϕ – угол внутреннего вращения (C₂C₁C₁₂O₁₃), V₂ – значение барьера внутреннего вращения.

Результаты и обсуждение

С учетом вышеуказанных ограничений одновременно уточняли восемь геометрических параметров (длины связей: C_1-C_2 , C_1-C_{12} , $C_{12}-O_{13}$, C_4-Br_9 , (C-H)ср и валентные углы: $C_3C_4C_5$, $C_2C_1C_{12}$, $C_1C_{12}O_{13}$). Полученные величины приведены в табл. 2. Полная ошибка (указанная в скобках) включает в себя сумму удвоенного стандартного отклонения метода наименьших квадратов и масштабной ошибки (0.1%). Во всех случаях, за исключением одного $(u(C_2H_7) / r(C_{12}O_{13}) = -0.86)$, значения коэффициентов корреляции не превосходили величины 0.7.

<i>R</i> -фактор, %		
4.9		
7.5		

Из-за невозможности определения барьера внутреннего вращения по экспериментальным данным для *пара*-бромбензальдегида использовали расчетное значение (37 кДж/моль). Экспериментальные и теоретические кривые молекулярной составляющей интенсив-

СПИСОК ЛИТЕРАТУРЫ

- Самдал С., Странд Т., Тафипольский М. А., Вилков Л. В., Попик М. В., Вольден Х. В. // Вестн. Моск. ун-та. Сер. 2, Химия. 1997. 38. С. 297.
- Mollendal H., Gundersen S., Tafipolsky M. A., Volden H. V. // J. Mol. Struct. 1988. 444. P. 47.
- Frisch M. J., Trucks G.W., Schlegel H. B. et al. Gaussian 94 Program. Revision B.3. Gaussian Inc. Pittsburgh PA. 1995.
- 4. Fogarasi G., Pulay P. / Vibrational Spectra and Structure. Amsterdam, 1985. 14.
- Hedberg L., Mills I.M. // J. Mol. Spectrosc. 1993. 160. P. 117 (Version 3.0. 1994).
- Zeil W., Haase J., Wegmann L. // Z. Instrumentenkd. 1966. 74.
 P. 84; Bastiansen O., Graber R., Wegmann L. // Balzers High Vacuum Report. 1969. 25. P. 1.

ности рассеяния приведены на рис. 2. Экспериментальная и теоретическая кривые радиального распределения представлены на рис. 3. В табл. 3 проведено сравнение некоторых структурных параметров в ряду бром-замещенных бензолов.

Полученная длина связи С–Вг в 4-бромбензальдегиде в пределах ошибки эксперимента хорошо согласуется с расчетной величиной и несколько меньше, чем в бромбензоле. Средние длины связей С–С бензольного кольца не подвержены заметным изменениям. Следует отметить, что имеется тенденция к увеличению валентного угла бензольного атома углерода, связанного с альдегидной группой в 4-бромбензальдегиде по сравнению с бензальдегидом.

Таким образом исследование трех *пара*-галогенпроизводных бензальдегида (фтора, хлора и брома) показывает, что наибольший эффект влияния альдегидной группы через бензольное кольцо имеет место в *пара*фторбензальдегиде (длина связи С–F сокращается на 0.01 Å по сравнению с длиной связи во фторбензоле [1]). В молекулах 4-хлор- и 4-бромбензальдегида найденные длины связей углерод–галоген не отличаются от длин связей углерод–галоген в соответствующих галогенбензолах в пределах ошибок эксперимента.

Работа выполнена при финансовой поддержке Норвежской Академии наук и Российского фонда фундаментальных исследований (проекты № 96-03-32660а и № 96-15-97469). Авторы выражают признательность профессору университета г. Осло С. Самдалу за помощь и поддержку при проведении данной работы.

- Gundersen S., Strand T.G. // J. Appl. Cryst. 1996. 29. P. 638.
- Ross A. W., Fink M., Hildebrandt R. // International Tables for X-ray Crystallography ed. A.J.C. Wilson. Dortrecht. 1992. Vol. C. P. 245.
- Gundersen G., Samdal S., Seip H.M. // Program description, Department of Chemistry, University of Oslo, Oslo 3, Norway (August, 1980).
- Almenningen A., Brunvoll J., Popik M. V., Sokolkov S. V., Vilkov L. V. and Samdal S. // J. Mol. Struct. 1985. 127. P. 85.
- Borisenko K. B., Bock Charles W., Hargittai I. // J. Phys. Chem. 1996. 100. P. 7426.
- Almenningen A., Brunvoll J., Popik M. V., Vilkov L. V., Samdal S. // J. Mol. Struct. 1984. 118. P. 37.