ХИМИЯ НЕФТИ И ОРГАНИЧЕСКИЙ КАТАЛИЗ

УДК 541.124/128.3:541.64:542.953+546.26:539.216.2

ВЛИЯНИЕ УСЛОВИЙ ПОЛИКОНДЕНСАЦИОННОГО ПРОЦЕССА НА ВАЛЕНТНОЕ СОСТОЯНИЕ УГЛЕРОДА В α-C:H-ПЛЕНКАХ, ПОЛУЧЕННЫХ ИОННО-ЛУЧЕВЫМ МЕТОДОМ

А.П. Руденко, И.И. Кулакова, В.Л. Скворцова, В.В. Слепцов, Г.Е. Хоц, В.И. Жилина, А.Н. Антипов

(кафедра химии нефти и органического катализа*)

Методами ИК-спектроскопии МНПВО и электронной ОЖЭ-спектроскопии изучены состав и структура α -C:H-пленок, полученных ионно-лучевым способом из циклогексана и ацетилена. Показано, что соотношение в пленке концентраций углерода в разных валентных состояниях (sp^3 -, sp^2 - или *sp*-гибридизациях) зависит не только от условий энергетической активации реагирующих частиц, но и от стехиометрических и кинетических условий процесса. Полученные данные находятся в полном соответствии с поликонденсационным механизмом образования полиуглеродного вещества и формирования валентного состояния слагающих его атомов.

Как известно [1, 2], α-С:Н-пленки получают из органических веществ различными методами CVD, в том числе с ионно-плазменной активацией газовой фазы и электронной стимуляцией процесса роста. Полиуглеродное вещество таких пленок образовано атомами углерода с преимущественной sp^2 -гибридизацией их валентных электронов. В определенных условиях может увеличиваться доля полиуглеродных структур с атомами углерода в состояниях sp³- или sp-гибридизации. Валентное состояние углерода** сильно влияет на оптические, электрические и механические свойства получаемых α-С:Н-пленок. Изменения соотношения валентных состояний углеродных атомов обычно добиваются за счет варьирования степени энергетической активации процесса образования пленки [1, 2]. Однако в работах [4, 5] показано, что процесс формирования углеродной пленки на подложке имеет поликонденсационную природу. Это открывает возможность управления процессом за счет варьирования стехиометрических и кинетических условий самой поликонденсации (изменение природы исходных органических молекул и подложки, введение добавок разных веществ и изменение механизма процесса).

В настоящей работе мы исследовали влияние природы исходных углеводородов (C_6H_{12} , C_2H_2), добавок к ним (H_2 , O_2 , CF₄, CH₃OH), а также полимеризационных и поликонденсационных реакций при отжиге α -C:H-пленок при разных температурах на валентное состояние углерода, отражающееся в составе и структуре пленок, получаемых ионно-лучевым методом при определенных степенях энергетической стимуляции процесса осаждения.

Экспериментальная часть

α-С:Н-пленки получали методом CVD, используя ионный источник с холодным катодом [6, 7], из циклогексана или ацетилена без добавок или с добавками других веществ. Степень энергетической активации ре-

^{*} Работа выполнена совместно с МГАТУ им. К.Э.Циолковского.

^{**} Понятие «валентное состояние углерода» ввел В.М.Татевский [3]. Согласно [3], существование трех валентных состояний углерода (4,3,2) выводится из экспериментальных фактов и является объективной реальностью, не зависящей от того, как они интерпретируются. Описание же этих валентных состояний sp^3 -, sp^2 - и sp-гибридизацией валентных электронов углеродного атома, даваемое квантовой химией, является лишь одной из возможных попыток объяснения, которая хотя и содержит долю истины и весьма наглядна, но не свободна от недостатков, так как основана на ряде произвольных предположений, не вытекающих из основ квантовой механики.

Режим осаждения		Vehopug	D_{2893}				
<i>U</i> _{<i>d</i>, кВ}	J_e/J_i	отжига	исходная пленка	Температура, °С			
				200	300	400	600
0.6	_	воздух	0.75	0.76	0.50	0.50	_
3.0	_	воздух	0.56	0.60	0.48	0.46	0
3.0	2	вакуум	0.60	0.62	0.48	0.02	_

Влияние температуры отжига на изменение оптической плотности (D₂₈₉₃) пленок α-C:H, полученных из циклогексана

гулировали, повышая напряжение разряда от 0.6 до 3.0 кВ или вводя электроны в ионный пучок. В качестве подложек использовали кремний и кварц. Температура подложки не превышала 50°С. Время осаждения выбирали таким, чтобы толщина осаждаемых пленок во всех экспериментах составляла ~120 нм.

Состав и структуру α-С:Н-пленок изучали с помощью двух методов: метода многократного нарушенного полного внутреннего отражения (МНПВО) в ИКобласти [8] и метода электронной ОЖЭ-спектроскопии. ИК-спектры регистрировали на спектрофотометре «IR-435» (*Shimadsu*). Для этого пленки осаждали с двух сторон на специальный элемент МНПВО из высокоомного кремния, который обеспечивал до 100 отражений луча. О валентном состоянии углерода пленок судили по распределению плотности электронных состояний в валентной зоне, полученному в результате обработки KVV-линии углерода в ОЖЭ-спектре [9].

Для некоторых пленок было изучено влияние отжига на воздухе или в вакууме ($1 \cdot 10^{-6}$ мм рт. ст.) в диапазоне температур 200–600°С.

Результаты и их обсуждение

Влияние степени энергетической активации на валентное состояние углерода a-C:H-пленок

Свойства α -С:Н-пленок, полученых разными методами CVD, в значительной степени зависят от энергии ионов, бомбардирующих подложку в процессе роста пленки [1, 2].В большинстве работ по осаждению α -С:Н-пленок изучено влияние энергии ионов, главным образом, на электрофизические и оптические свойства получаемых пленок; в меньшей степени изучено влияние электронного стимулирования. Влияние природы заряженных частиц (ионов или электронов), стимулирующих процесс роста, на соотношение валентных состояний углерода в α -C:H-пленках изучено недостаточно. Однако под действием ионов и электронов, попадающих на поверхность растущего слоя полиуглерода, также может происходить возбуждение реагирующих частиц, приводящее к изменению валентного состава углерода α -C:H-пленок.

На рис. 1 представлены ИК-спектры МНПВО α-С:Н-пленок, полученных из циклогексана при напряжении разряда (U_d) 0.6 и 3 кВ (спектры 1 и 2), а также в условиях введения электронов в ионный пучок (спектр 3). При этом соотношение потоков электронов (J_e) и ионов (J_i) было равно 2. Для спектров характерно наличие интенсивной полосы поглощения в области 2800 - 3000 см⁻¹, отвечающей валентным колебаниям С-Н-связей. При этом в спектрах пленок, полученных при высокой энергии ионов (спектр 2) и в условиях компенсации ионного пучка электронами (спектр 3), эта полоса довольно узкая. Она определяется, в основном, валентными колебаниями С-Н-групп, содержащих углерод в *sp³*-состоянии. На плече этой полосы наблюдается поглощение при 3000 см⁻¹, соответствующее колебаниям С-Н-групп с атомами углерода в *sp*²-состоянии. Уменьшение напряжения разряда и, соответственно, энергии ионов приводит к уширению этой

полосы, появлению дуплетов, свидетельствующих о наличии С–H-связей в CH_2 - и CH_3 -группах (спектр 1). Одновременно с этим при уменьшении энергии ионов наблюдается поглощение в области 3400 см⁻¹, связанное с колебаниями О–H-связей. Это свидетельствует о значительном содержании воды в пленке, что может быть связано с ее пористостью. Последняя наблюдается и при микроскопических исследованиях (450^x) поверхности пленок. В условиях интенсивной ионной бомбардировки получаются плотные пленки, и адсорбированная вода в них отсутствует.

В спектрах 1 и 2 на рис. 1 также проявляется интенсивная полоса поглощения в области 1580 см¹, характеризующая валентные колебания С=С-связей. Введение электронов в ионный пучок значительно уменьшает содержание sp^2 -углерода в полученных пленках (спектр 3). По данным ОЖЕ-спектроскопии, содержание sp^3 -углерода возрастает с 67 до 87%. Отличительной особенностью спектров 2 и 3 является наличие слабой полосы поглощения при 2200 – 1900 см⁻¹, обусловленной валентными колебаниями С=С и С=С=С групп с *sp*-углеродом. Эта полоса практически отсутствует в спектре 1.

Рис. 1. Влияние степени энергетической активации плазмы на ИК-спектры МНПВО α -С:Н-пленок, полученных из циклогексана на кремнии: $1 - U_d = 0.6$ кВ; $2 - U_d = 3.0$ кВ; $3 - U_d = 3.0$ кВ, $(I_e/I_i) = 2$

Рис. 2. Влияние добавок к углеводородам на ИК-спектры МНПВО α -C:H-пленок, осажденных на кремнии: 1 – чистый C_6H_{12} , 2 – смесь C_6H_{12} + 52 об. % CH₃OH, 3 – чистый C_2H_2 , 4 – смесь C_2H_2 + 73 об. % CH₃OH, 5 – смесь C_6H_{12} + 5 об.% CF₄

Влияние природы исходного вещества и добавок на валентный состав углерода α-C:H-пленок

Согласно [5], следовало ожидать, что введение в исходный углеводород добавок, влияющих на ход поликонденсационного процесса, будет изменять структуру и валентный состав углерода осаждаемых α -C:H-пленок.

На рис. 2 представлены спектры МНПВО пленок, полученных из чистых циклогексана и ацетилена, а также их смесей с метанолом и фреоном-14 (CF₄). Добавление метанола к циклогексану приводит к значительному увеличению поглощения пленок в области 2100 – 1900 см⁻¹ (спектры 1 и 2), что свидетельствует об увеличении количества полииновых и кумуленовых цепочек в структуре пленки. Одновременно наблюдается расширение полосы поглощения в области 3300 – 2870 см⁻¹, обусловленной колебаниями С-H-связей. Это указывает на появление -CH₂- и -CH₃-групп наряду с \equiv C-H-группами. Появляются также полосы поглощения гидроксильных (3340 см⁻¹) и карбонильных (1700 см⁻¹) групп.

Пленки, полученные из чистого ацетилена, содержат большое количество карбинового компонента (полоса поглощения 2000 – 1990 см⁻¹) (спектр 3 на рис. 2) и значительно меньшее количество СН-групп по сравнению с пленками, полученными из чистого циклогексана. Добавление метанола к ацетилену существенно изменяет ИК-спектр пленки (спектр 4). Полоса поглощения С–Н-групп практически исчезает, но появляется узкая полоса поглощения при 2089 см⁻¹ и широкая – в области 1700 – 1500 см⁻¹. Эти особенности спектра характерны для карбина. Наличие карбина в пленках подтверждают и ОЖЕ-спектры.

Значительное изменение валентного состава углерода α -C:H-пленок наблюдается при введении в циклогексан небольших (даже до 5 об.%) добавок фреона-14 (спектр 5 на рис. 2). При этом резко уменьшается интенсивность полосы поглощения С–H-групп (2893 см⁻¹) и исчезают полосы при 3273, 2080, 1960 и 1580 см⁻¹. Характер спектра, а также наблюдаемое интенсивное травление пленки при больших концентрациях фреона в смеси показывают, что, в отличие от

Рис.3 Изменение ИК-спектра МНПВО α-С:Н-пленки, полученной из циклогексана (1), после отжига на воздухе в течение 30 мин при 400° (2) и 600°С (3).

низкоэнергитического процесса магнетронного осаждения [8], в этом случае не происходит встраивания фтора в структуру пленки. При этом радикалы или ионы типа CF⁺, CF⁺ и др. взаимодействуют со связанным водородом в пленке с образованием легколетучих веществ, которые удаляются с поверхности растущего слоя при ионной бомбардировке. Уменьшение содержания водорода в пленке приводит и к уменьшению доли sp^3 -углерода до 40%. Пленки, полученные в этих условиях на кварцевых подложках, более темные, что связано с ростом доли sp^2 -углерода, который вызывает увеличение коэффициента поглощения в видимой области.

При малой степени активации CF₄, когда он вводится не в ионный источник, а непосредственно в рабочую камеру, изменений спектра α-C:H-пленок практически не происходит.

Введение в циклогексан добавок кислорода или водорода также приводит к изменению валентного состава углерода α -C:H-пленок. Так, по данным ОЖЕ-спектроскопии, в пленках, осажденных из смеси C₆H₁₂ + 20 об.% H₂, содержание *sp*²-углерода увеличивается до 80%. Добавки кислорода влияют на скорость роста пленок, их оптические свойства, а следовательно, и на состав, подобно добавкам метанола.

Влияние отжига α-С:Н-пленок на валентный состав полиуглерода

 α -С:Н-пленки, полученные из циклогексана при температуре кремниевой подложки < 50°С, подвергали последовательному отжигу в вакууме или на воздухе, а затем регистрировали их ИК-спектры МНПВО и оценивали оптическую плотность (D_{2893}) полосы поглощения СН-связей. Полученные результаты приведены в таблице и на рис. 3.

Как видно из рис. 3, после отжига на воздухе при температуре 400°С наблюдается увеличение интенсивности полос поглощения при 1743 (колебания C=O) и 1580 см⁻¹ (колебания связи C=C), одновременно с этим уменьшается интенсивность полос поглощения при 3272, 2893, 2089 и 1980 см⁻¹ (спектры l и 2). Все это указывает на процесс разрушения C–H, C=C и C=C=C связей. Увеличение температуры отжига до 600°С приводит к окислению и разрушению пленки (спектр 3).

В таблице приведены данные по изменению оптической плотности D на частоте, характерной для С–H-групп (2893 см⁻¹), от температуры отжига для α -C:H-пленок, полученных в условиях различной энергетической активации. Из таблицы следует, что при температуре отжига 200° наблюдается некоторое увеличение оптической плотности D_{2893} . Учитывая полимерную природу полиуглеродного вещества исходной пленки, этот факт можно связать с перестройкой ее структуры. Перестройка может быть вызвана двумя причинами.

Во-первых, она может быть обусловлена внутримолекулярным перераспределением водорода во фрагментах продуктов уплотнения, составляющих вещество пленки. Это приводит к изменениям валентного состояния углерода:

$$\frac{H}{H}C-C\overset{H}{\smile}H + HC=C\overset{H}{\longleftarrow}H + H^{C}C-C\overset{H}{\smile}C-C\overset{H}{\leftarrow}H \overset{H}{\leftarrow}H$$

$$(C_{sp}^{3}) (C_{sp}^{2}) (C_{sp}^{3})$$

Во-вторых, возможно и гидрирование кратных углерод-углеродных связей молекулярным водородом, окклюдированным веществом пленки в процессе роста.

Оба эти процесса приводят к образованию новых связей водорода с углеродом и переходу его в sp^3 -состояние и, следовательно, к уменьшению доли углерода в sp^2 - и *sp*-гибридизованных состояниях.

При более высоких температурах отжига $(300 - 600^{\circ})$ оптическая плотность пленки D_{2893} сильно уменьшается, что также показано в таблице. Учитывая, что при таких температурах полимерные продукты уплотнения претерпевают поликонденсационную стадию превращений с отщеплением легких молекул, отмеченный факт можно связать с дегидрированием вещества пленки, приводящим к уменьшению количества связанного водорода (т. е. числа СН-групп) и изменению валентных состояний атомов углерода, участвующих в процессе, например:

$$-\overset{i}{\mathbf{C}}-\overset{i}{\mathbf{C}}-\overset{i}{\mathbf{C}}-\overset{i}{\mathbf{C}}-\overset{i}{\mathbf{C}}-\overset{i}{\mathbf{C}}-\overset{i}{\mathbf{C}}-\overset{i}{\mathbf{C}}=\overset{i}{\mathbf{C}}-\overset{i}{\mathbf{C}}-\overset{i}{\mathbf{C}}=\overset{i}{\mathbf{C}}-\overset{i}{\mathbf{C$$

При этом, как свидетельствуют данные таблицы, дегидрирование пленки облегчается при понижении давления. Процесс дегидрирования сопровождается механическим разрушением пленки и отслаиванием ее от подложки. В случае отжига в вакууме это наблюдается уже при 400°, тогда как на воздухе – только при 600°.

Как следует из приведенного материала, на валентные состояния углерода в α -C:H-пленках, полученных ионно-лучевым методом, влияет не только степень энергетической активации плазмы, но также и стехиометрические и кинетические условия поликонденсационного процесса, в результате которого формируется углеродная пленка. Эти данные хорошо сгласуются с поликонденсационной природой изучаемых α -C:H-пленок и с химическим механизмом изменения валентных состояний углерода в результате осуществления отдельных стадий поликонденсационного процесса. Рост или уменьшение величины валентного состояния происходят в результате стадий присоединения или отщепления соответственно.

СПИСОК ЛИТЕРАТУРЫ

- 1. Coudere P., Catherine V. // Thin Solid Films. 1987. 146. P. 93.
- Holiday P., Dehbi-Alaoni A., Matthews A. //Surface and Coating technology. 1991. 47. P. 315.
- Татевский В. М. Химическое строение углеводородов и закономерности их физико-химических свойств. М., 1955.
- Руденко А. Р., Кулакова И. И., Скворцова В. Л. //Успехи химии. 1993. 62. С. 99.
- Rudenko A. P., Kulakova I. I., Skvortsova V. L., Sleptsov V. V., Khots G.E., Gulina V. I. //Mol. Mat. 1996. 6. P. 103.
- Машиев Ю.П. // Вакуумная техника и технология. 1992. 2. С. 50.
- Sleptsov V. V., Gulina V. I., Bizukov A. A., Khots G. E., Inakov N. N. // Diamond and Related Materials. 1995. 4. P. 120.
- 8. Харрик Н. Спектроскопия внутреннего отражения. М., 1970.
- Хвостов В.В., Бабаев В. Г., Гусева М. Б. //Физика твердого тела. 1985. 27. С. 887.

Поступила в редакцию 06.02.97