УДК 543.257.1

ИОНОФОРНЫЕ И ЭЛЕКТРОДНЫЕ СВОЙСТВА КИСЛОТНЫХ АНТИБИОТИКОВ ПО ОТНОШЕНИЮ К ЭФИРАМ АМИНОКИСЛОТ

Н.В. Шведене, М.Ю. Немилова, Е.В. Екимова, М.Ф. Тимченко, М.М. Щербакова, И.В. Плетнев

(кафедра аналитической химии)

Изучены транспортные свойства природного антибиотика лазалоцида по отношению к метиловому эфиру фенилаланина (МЭФА) при переносе через хлороформную мебрану. Разработан ПВХ – пластифицированный ионселективный электрод (ИСЭ) на основе лазалоцида, обратимый к МЭФА в интервале концентраций $0.1 - 5 \cdot 10^4$ моль/л. Предложенный электрод проявляет высокую селективность при определении МЭФА в присутствии щелочных и щелочноземельных катионов. Рабочая область рН 4.5 – 7.0. Коэффицент энантиомерной селективности $K_{\rm D/L} = 2.38$. Показано, что при использовании в качестве активного компонента мембраны антибиотика омомицина характиристики ИСЭ в растворах МЭФА значительно уступают ИСЭ на основе лазалоцида.

Известно, что природные кислотные полиэфирные антибиотики группы нигерицина, имеющие открытоцепочечную структуру (моненсин, лазалоцид, салиномицин и др.) используют при разделении и потенциометрическом определении катионов щелочных и щелочноземельных металлов [1–4]. Полиэфирные молекулы таких ионофоров избирательно переносят катионы через органическую мембрану под действием градиента концентраций ионов водорода в растворе-источнике и растворе-приемнике.

Найдено также, что некоторые оптически активные природные переносчики проявляют энантиомерную селективность при транспорте органических аммонийных катионов. В частности, амидные производные моненсина энантиоселективны к L-изомерам эфиров фенилаланина, лейцина и фенилглицина [5]. Изучена также энантиоизбирательность ионоселективных электродов (ИСЭ) на основе антибиотиков и их производных к оптически активным эфирам аминокислот [4, 6].

Однако в упомянутых работах ИСЭ использовали лишь для исследования комплексообразования по схеме «гость-хозяин». Не изучена селективность ИСЭ (кроме энантиомерной), не приведены их метрологические характеристики.

Эти вопросы рассмотрены в данном сообщении. Кроме того, мы исследовали электродные свойства мембран на основе антибиотика омомицина, впервые полученного методом биохимического синтеза в лаборатории изыскания продуцентов новых антибиотиков во ВНИИА (Москва) [7].

Экспериментальная часть

Полиэфирные ациклические антибиотики лазалоцид и омомицин, формулы которых представлены ниже, были синтезированы канд. биол. наук Т.Н. Дробышевой во Всероссийском научно-исследовательском институте антибиотиков (ВНЦА–ВНИИА) Министерства медицинской промышленности [7].

лазалоцид

омомицин

В работе использовали гидрохлориды метилового эфира фенилаланина (а также его D- и L-изомеры), D-, L-валина и D-, L-лейцина, а также метилового и трет.-бутилового эфиров L-изолейцина, гидрохлориды метиламина, диэтиламина и триметиламина (все марки «х.ч.»)

Ячейка для изучения транспортных свойств переносчика по отношению к метиловому эфиру фенилаланина представляла собой U-образную трубку диаметром 8 мм с мембраной из хлороформа («х.ч.», 10 мл), содержащей $5 \cdot 10^{-5}$ моль/л лазалоцида. Фаза источника (5 мл) содержала раствор (0.1 моль/л) метилового эфира фенилаланина (МЭФА) с рН 5.9. В фазе приемника (5 мл) величина рН составляла 3.5. Кислотность среды создавали с помощью хлористоводородной кислоты и твердого хлорида лития. Содержание переносимых ионов водорода в фазе источника определяли по изменению величины рН стеклянным электродом «ЭСЛ-47-07».

Для изучения электродной активности и избирательности антибиотиков готовили ПВХ-пластифицированную мембрану (31.6–33.0% ПВХ, 63.4–66.0% пластификатора – *орто*-нитрофенилоктилового эфира («Sigma») и 1–5% активного компонента), закрепляли ее в тефлоновом корпусе и проводили измерение электродного потенциала, а также коэффициентов селективности так, как описано в [8]. Внутрь электрода помещали 1 мл раствора МЭФА (1·10⁻¹моль/л, рН 3.8). Время кондиционирования мембранного электрода в 0.1 М растворе МЭФА составляло 24 ч. Рабочие растворы имели рН 5.2. В качестве полимерного связующего компонента в пластифицированных мембранах был использован поливинилхлорид различных марок:

Рис.1. Изменение pH в растворе-источнике, содержащем МЭФА, от времени

Рис. 2. Влияние строения ионофора и марки ПВХ на электродный отклик мембранного ИСЭ в растворах МЭФА (pH 5.2): 1 – лазалоцид, 2 – омомицин

ВММ – ПВХ с высокой молекулярной массой (*Fluka-81387*), СЕЛ – селектофор (*Fluka-81392*), С-70 – отечественный ПВХ.

Результаты и их обсуждение

Соединения группы нигерицина, к которым относится лазалоцид, индуцируют обмен ионов по принципу антипорта за счет градиента концентраций ионов водорода в растворах по обе стороны жидкой мембраны:

 M^+ (раствор-источник) $\leftrightarrow M^+$ (раствор-приемник).

О скорости переноса катионов можно судить по изменению концентрации протонов в обоих растворах.

Для выявления ионофорной активности лазалоцида по отношению к протонированным катионам МЭФА была измерена скорость переноса H^+ через хлороформную мембрану (рис.1). Найдено, что наименьшее значение скорости ($1.6 \cdot 10^{-10}$ моль/ч) наблюдали в первые 16 ч. Затем скорость переноса возрастала и достигала величины (6.5-7.5)· 10^{-8} моль/ч. Величина рН раствора-приемника составляла в конце опыта 6.01.

Концентрацию МЭФА измеряли для контроля с помощью разработанного нами ранее ИСЭ (обратимого к МЭФА) на основе фосфорилсодержащих подандов [9]. Концентрация определяемых ионов в приемнике составляла 7.8·10⁻⁴ моль/л, что приблизительно со-

Таблица 1

Коэффициенты селективности МЭФА-ИСЭ на основе лазалоцида для мембран, содержащих ПВХ различных марок

(метод биионных потенциалов)

	$K_{i/j}^{\Pi OT} \cdot 10^2$				
Сопутст- вующий ион	ионный радиус	ПВХ			
		СЕЛ	BMM	C-70	
Li ⁺	0.068	2.00	0.72	0.96	
Na ⁺	0.098	1.90	0.72	0.85	
\mathbf{K}^+	0.133	2.90	1.80	1.90	
$\mathrm{NH_4}^+$	0.143	1.80	1.44	1.70	
Cs^+	0.165	2.60	3.50	1.90	
Mg^{2+}	0.074	0.30	0.22	0.26	
Ca ²⁺	0.104	0.80	0.48	0.59	
Sr^{2+}	0.120	0.96	0.79	0.94	
Ba ²⁺	0.138	7.30	6.90	9.40	

впадало с концентрацией накопившихся в источнике ионов водорода.

Таким образом, из полученных данных следует, что лазалоцид способен переносить протонированные катионы МЭФА по принципу антипорта со скоростью, близкой к скорости переноса катионов другими антибиотиками, использующимися в качестве активных компонентов мембран ИСЭ [1].

Для изучения возможности использования кислотных антибиотиков лазалоцида и омомицина в качестве электродно-активного компонента мембраны ИСЭ были приготовлены пластифицированные мембраны различных марок из ПВХ и изучены их электродные свойства в растворах гидрохлорида метилового эфира фенилаланина. Найдено, что область линейности электродной функции для мембран на основе лазалоцида не зависит от марки используемого ПВХ и составляет $1 \cdot 10^{-1} - 5 \cdot 10^{-4}$ моль/л, тогда как крутизна функции наиболее близка к теоретическому значению (56±1 мВ/дек) для мембран, содержащих ПВХ С-70 (рис. 2). В случае использования мембран, содержащих в качестве электродно-активного компонента омомицин, наклон

линейной зависимости потенциала ИСЭ от логарифма концентрации МЭФА ниже теоретического для ПВХ всех марок. Отклик максимален (49 ± 2 мВ/дек) для мембран, содержащих в качестве полимерного связующего ПВХ-ВММ, а при использовании ПВХ-СЕЛ наклон составляет всего 35 ± 3 мВ/дек. Таким образом, оказалось, что использование лазалоцида в качестве активного компонента мембран ИСЭ, обратимых к МЭФА, предпочтительно.

Для ИСЭ на основе лазалоцида в растворах метилового эфира L-изолейцина не получено удовлетворительного электродного отклика. В растворах более гидрофобного трет.-бутилового эфира L-изолейцина наклон электродной функции составлял 29±2 мВ/дек (рис.3).

Величина электродного потенциала разработанного нами ИСЭ, содержащего лазалоцид, не зависит от кислотности исследуемого раствора МЭФА в широкой области pH 4.5 – 7.0. При pH менее 4.5 наблюдали возрастание величины потенциала электрода, связанное, по-видимому, с взаимодействием протонов с активным компонентом мембраны. В области pH более 7.0 падение потенциала может быть объяснено гидролизом эфиров аминокислот.

При изучении электродной селективности (табл.1) найдено, что влияние катионов щелочных и щелочноземельных металлов на величину электродного потенциала несколько увеличивается с ростом ионного радиуса сопутствующего иона. Сильнее всего на опреде-

Таблица 2

Электродные характеристики мембран на основе антибиотиков в растворах L-изомеров эфиров аминокислот

Эфир	Лазалоцид		Омомицин	
	S, MB/дек	Область линейности, моль/л	S, MB/дек	Область линейности, моль/л
L-МЭФА	56±1	$5 \cdot 10^{-3} - 1 \cdot 10^{-1}$	53±1	$5 \cdot 10^{-4} - 1 \cdot 10^{-1}$
L-МЭВ	35±2	$1 \cdot 10^{-4} - 1 \cdot 10^{-1}$	27±2	$1 \cdot 10^{-3} - 1 \cdot 10^{-1}$
L-МЭЛ	_	_	27±2	$1 \cdot 10^{-3} - 1 \cdot 10^{-1}$

Рис. 3. Электродные функции ПВХ-мембран (С-70) на основе:
 1 – лазалоцида, 2 – омомицина в растворах МЭФА;
 3 – ИСЭ на основе лазалоцида в растворе
 трет-бутилового эфира L-изолейцина

ление МЭФА влияет ион бария, размер которого, как следует из литературных данных [2], находится в структурном соответствии с псевдомакроциклической полостью, образуемой им при комплексообразовании с аналогами лазалоцида – открытоцепочечными производными моненсина.

В целом следует отметить, что мембраны, содержащие ПВХ-ВММ несколько более избирательны к МЭФА в присутствии посторонних ионов по сравнению с мембранами но основе ПВХ других марок.

Коэффициенты потенциометрической селективности для мембранных МЭФА-ИСЭ на основе природного антибиотика лазалоцида близки по величине разработанным нами ранее МЭФА-ИСЭ (ПВХ С-70) на основе подандов и каликс [8], аренов [9].

Для выявления энантиомерной избирательности исследуемых антибиотиков к оптическим изомерам метиловых эфиров аминокислот были изучены электродные свойства мембран на основе лазалоцида и омомицина в растворах L-изомеров, результаты представлены в табл. 2. Найдено, что только в растворах L-МЭФА для мембран на основе лазалоцида и омомицина наклон электродной функции близок к теоретическому; в растворах метилового эфира L-валина (L-MЭВ) крутизна электродной функции существенно ниже теоретического значения (табл. 2). Значительное различие в свойствах электродноактивных компонентов было обнаружено по отношению к L-изомерам метилового эфира L-лейцина (L-МЭЛ). Так, если поведение мембран на основе омомицина практически одинаково в растворах L-MЭВ и L-MЭЛ, то мембрана на основе лазалоцида не дает катионного отклика по отношению к L-МЭЛ. Коэффициент энантиомерной селективности $K_{D/L} = 10^{(E_L - E_D)/S}$ [4] можно рассчитать только для L- и D-изомеров МЭФА и эта величина составляет 2.38 для мембран на основе лазалоцида и 1.85 для мембран, содержащих омомицин. Полученные величины превосходят значения коэффициентов энантиомерной селективности L-МЭФА, найденные авторами [4-6] для ПВХ-мембран на основе лазалоцида. Таким образом, в результате проведеного исследования было установлено, что кислотные ациклические полиэфиры – антибиотики лазалоцид и синтезированный впервые омомицин могут быть использованы в качестве активных компонентов мембранных ИСЭ, обратимых к L-изомерам МЭФА.

СПИСОК ЛИТЕРАТУРЫ

- 1. Овчинников Ю.А., Иванов В.Е., Шкроб А.М. Мембраноактивные комплексоны. М., 1974.
- 2. Suzuki K., Tohda K., Agura H., Matsuzoe M., Inoue H., Shirai T. //Anal. Chem. 1988. **60.** P. 17141.
- Tohda K., Suzuki K., Kosuge N., Watanabe K., Nagashima H., Inoue H., Shirai T. //Anal. Chem. 1990. 62. P. 936.
- Maruyama K., Sohmiya H. Tsukube H. //Tetrahedron. 1992. 48.
 P. 805.
- 5. Maruyama K., Sohmiya H., Tsukube H. //J. Chem. Soc., Chem. Commun. 1989. № 13. P. 864.
- 6. Tsukube H., Sohmiya. H.//J. Org. Chem. 1991. 56. P. 875.
- 7. Дробышева Т.Н. /Автореф. дис....канд. биол. наук. М., 1990.
- Немилова М.Ю., Шведене Н.В., Торочешникова И.И., Лютикова И.В., Плетнев И.В.//Вестн. моск. ун-та. Сер. 2, Химия. 1992. 33. С. 280.
- 9. Шведене Н.В., Немилова М.Ю., Плетнев И.В., Затонская В.Л., Баулин В.Е., Любитов И.Е., Швядас В.К. //ЖАХ. 1995. **50.** С. 440.

Поступила в редакцию 03.12.96