УДК 539.6:543.544

ИЗМЕРЕНИЕ ИЗОТЕРМ АДСОРБЦИИ АНИЗОЛА И БЕНЗОЛА ИЗ РАСТВОРА В *н*-ГЕКСАНЕ НА ГИДРОКСИЛИРОВАННОМ СИЛИКАГЕЛЕ МЕТОДОМ ВЫСОКОЭФФЕКТИВНОЙ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ

С.Н. Ланин, М.Ю. Леденкова, Ю.С. Никитин

(кафедра физической химии)

Получены хроматограммы и измерены хроматографические параметры удерживания анизола и бензола в системе осушенный *н*-гексан – гидроксилированный силикагель методом ВЭЖХ. По методу Глюкауфа рассчитаны изотермы адсорбции анизола и бензола из растворов в *н*-гексане. Показано, что эти изотермы достаточно хорошо описываются уравнением мономолекулярной адсорбции из бинарного раствора полностью смешивающихся жидкостей. Предложен метод определения констант этого уравнения непосредственно из хроматографических данных (удерживаемого объема и концентрации, пропорциональной высоте пика) без предварительного построения изотерм методом Глюкауфа. Оба метода дают близкие значения констант уравнения адсорбции, изотермы адсорбции практически совпадают.

В настоящее время вопросы механизма и как следствие селективности удерживания сорбатов в высокоэффективной жидкостной хроматографии (ВЭЖХ) во многом остаются до конца неясными, что объясняется многообразием и сложностью межмолекулярных взаимодействий между компонентами даже относительно простых хроматографических систем. Исследование сорбции веществ позволяет накопить базу экспериментальных и расчетных характеристик, которые могут быть использованы как для решения теоретических вопросов современной физической химии поверхностных явлений, так и при разработке методик анализа веществ и материалов хроматографическими методами.

В последнее время исследование адсорбции из растворов. особенно в области малых концентраций, все чаще проводят с помощью ВЭЖХ. Во-первых, ВЭЖХ можно использовать в качестве экспрессного и точного аналитического метода для определения концентрации равновесных растворов над изучаемым адсорбентом при статических методах измерения изотерм адсорбции. Во-вторых, изотерма адсорбции из растворов может быть рассчитана непосредственно из самих хроматограмм адсорбата при его элюировании растворителем из колонны с исследуемым адсорбентом. В этом отношении метод ВЭЖХ является уникальным сочетанием изучаемой адсорбционной системы и высокочувствительного измерительного инструмента [1-7].

Рис. 1. Хроматограммы анизола на силикагеле с гидроксилированной поверхностью (s = 300 м²/г) для объемов пробы раствора (мкл): с концентрацией 0.1837 моль/л: 1 – 5; 2 – 10; 3 – 25; 4 – 50; и с концентрацией 1.837 моль/л: 5 – 7; 6 – 10; 7 – 15 (подвижная фаза *н*-гексан; A = 0,8 о.е.)

Целью настоящей работы являлось изучение хроматографического поведения анизола и бензола на гидроксилированном силикагеле при элюировании *н*-гексаном, а также расчет из экспериментальных данных (параметров удерживания) изотерм адсорбции и констант распределения сорбатов в системе адсорбент – бинарный раствор.

Экспериментальная часть

Измерения проводили на микроколоночном жидкостном хроматографе «Милихром» со шприцевым насосом и спектрофотометрическим УФ-детектором (длина волны детектирования $\lambda = 254$ нм). Стальную колонку размером 120×2 мм заполняли суспензионным способом гидроксилированным крупнопористым силикагелем Силасорб-300 с удельной поверхностью $300 \text{ м}^2/\text{г}$ и средним диаметром частиц ~ 5 мкм, масса адсорбента в колонке m = 0.202 г. В качестве элюента использовали *н*-гексан, осушенный над цеолитом NaA, скорость потока элюента *w* составила 100 мкл/мин.

Объем вводимой пробы варьировали от 1 до 50 мкл. Концентрация рабочих растворов вводимой пробы составляла: в случае анизола – 0.1837 и 1.837 моль/л, в случае бензола – 0.1395 моль/л.

Мертвый объем колонки ($V_0 = 345$ мкл) определяли по удерживанию практически несорбируемого вещества – четыреххлористого углерода. Регистрацию хроматограмм и их обработку выполняли с помощью пакета программ «МультиХром», предназначенного

Таблица 1

Значения массы адсорбата (*m*_{аде}) в пробе, исправленного удерживаемого объема (*V*_R[']), высоты (*h*) и площади (*S*) пика, площади адсорбции (*S*_{аде}), концентрации (*c*) и величины адсорбции (*a*) для различных объемов пробы (*V*_{пр}) раствора анизола и бензола (подвижная фаза – осушенный *н*-гексан, температура комнатная)

V _{пр} ,	т _{адс} ,	V´ _R **,	<i>h</i> , _м В	<i>S</i> _{пика} ,	<i>S</i> _{адс} ,	<i>С</i> ,	<i>а,</i>		
мкл	МКМОЛЬ	мкл		мВ∙с	мВ·с	ммоль/л	мкмоль/г		
анизол									
1	0.184	3044	0.301	42.3	586.8	$\begin{array}{c} 0.79\\ 1.37\\ 2.21\\ 3.33\\ 4.56\\ 5.62\\ 6.53\\ 12.32\\ 16.37\\ 22.15\\ 30.54 \end{array}$	12.64		
2	0.368	2871	0.436	70.3	814.8		21.10		
5	0.919	2582	0.769	200.5	1391.9		31.57		
10	1.837	2297	1.331	438.9	2251.0		46.64		
15	2.756	2072	1.810	656.5	2883.3		51.91		
20	3.675	1857	2.200	863.1	3314.4		69.86		
25	4.593	1816	2.532	1068.7	3827.6		81.44		
50	9.187	1371	4.782	2141.9	5929.4		125.90		
7*	12.862	1039	6.308	2974.3	6848.2		146.60		
10*	18.374	824	8.304	4133.6	8159.5		179.55		
15*	27.561	555	10.563	5765.6	9170.8		217.02		
бензол									
5	0.697	159	1.688	28.2	191.3	25.10	23.49		
10	1.395	152	2.660	54.4	284.7	40.90	36.13		
15	2.092	149	3.401	80.5	367.0	53.00	47.17		
20	2.790	145	3.923	101.6	421.3	64.60	57.21		
25	3.487	143	4.435	124.7	482.2	77.20	69.35		

* Концентрация рабочего раствора анизола равна 1.837 моль/л.

**Удерживаемый объем, относящийся к массе адсорбента в колонке.

Рис. 3. Зависимость адсорбции бензола (*a*) от равновесной концентрации (*c*) в растворе *н*-гексана на гидроксилированной поверхности крупнопористого силикагеля Силасорб-300 при комнатной температуре: *l* – рассчитано по методу Глюкауфа, *2* – рассчитано по (1) с коэффициентами *K* и *a_m*, найденными по (7)

Рис. 4. Зависимость отношения мольной доли в подвижной фазе к адсорбции анизола (X/a) на гидроксилированной поверхности силикагеля Силасорб-300 от мольной доли (X) анизола в подвижной фазе. 1 – рассчитано по методу Глюкауфа, 2 – рассчитано по (1) с коэффициентами К и a_m , найденными по (7)

для автоматизации хроматографических исследований, а также для разработки хроматографических методик и проведения серийных анализов [8].

Результаты и их обсуждение

Адсорбция ароматических соединений (бензола и анизола), относящихся к сорбатам группы **B** [2], на гидроксилированном силикагеле (адсорбент типа **II** [2]) из раствора в *н*-гексане определяется не универсальными неспецифическими взаимодействиями, а специфическими направленными межмолекулярными взаимодействиями π -связей ароматического ядра и эфирной группы (анизол) с протонированным атомом водорода поверхностных силанольных групп (кислотного типа) сорбента.

Хроматограммы измеряли при введении в хроматографическую колонку разных количеств сорбата в диапазоне от 0.184 до 27.561 мкмоль (анизол) и от 0.697 до 3.487 мкмоль (бензол).

Достаточно хорошее совпадение задней границы хроматографических пиков (рис. 1), соответствующих разным пробам анизола, свидетельствует о том, что в колонке было установлено адсорбционное равновесие и выбранные условия эксперимента позволили сильно ослабить влияние диффузионных процессов на размывание хроматографических пиков, а, следовательно, использование метода Глюкауфа [1, 9] для расчета адсорбции и равновесной концентрации сорбата является правомерным. Для построения изотермы адсорбции измеряли хроматограммы для разных проб сорбатов и по ним рассчитывали значения величин адсорбции (a) и равновесных концентраций (c) сорбатов (табл. 1).

Таблица 2

Расчетные значения констант распределения (K) и предельной поверхностной концентрации (a_m) адсорбата в плотном адсорбционном монослое для системы гидроксилированный силикагель – *н*-гексан – сорбат

Расчет по уравнению	K	<i>а_т</i> , мкмоль/г				
анизол						
3	304.7	394.0				
7	336.5	349.0				
бензол						
7	9.9	642.2				

Как видно из представленных на рис. 1 хроматограмм, для анизола наблюдаются асимметричные хроматографические пики с растянутой задней границей и значительное уменьшение удерживания с увеличением пробы, что соответствует типу изотермы сорбции, выпуклой к оси адсорбции (рис. 2). Хроматографические пики бензола имеют относительно небольшую асимметрию, а величины удерживаемого объема V'_{R} уменьшаются незначительно с ростом количества сорбата и изотерма сорбции бензола имеет практически линейный характер (рис. 3). Для определения коэффициента распределения компонентов бинарного раствора *K* использовали уравнение изотермы адсорбции (1) [2]

$$a = \frac{a_m K X}{1 + (K - 1) X} \quad , \tag{1}$$

где X – концентрация адсорбата в ПФ, выраженная в мольных долях; a_m – поверхностная концентрация адсорбата в плотном адсорбционном монослое бинарного раствора (мкмоль/г); K – коэффициент распределения компонентов между двумя (объемным и адсорбционным) двухкомпонентными равновесными растворами, равный

$$K = \frac{X_1^S X_2}{X_1 X_2^S} , \qquad (2)$$

где X_p , X_i^s – мольные доли адсорбата (1) и растворителя (2) в ПФ и адсорбционном слое, соответственно. Для расчета значений констант уравнения (1) его удобно представить в линейном виде

$$\frac{X}{a} = \frac{1}{a_m K} + \frac{K - 1}{a_m K} X.$$
(3)

Из теории равновесной хроматографии известно, что

$$V_{R}' = \frac{da}{dc} = v_{m} \frac{da}{dX} , \qquad (4)$$

где v_m – среднемольный объем бинарного раствора элюента, а V'_R – удельный исправленный удерживаемый объем отнесенный к массе адсорбента.

Продифференцировав уравнение (1), получаем

$$\frac{da}{dX} = \frac{a_m K}{\left[1 + \left(K - 1\right) X\right]^2} \qquad (5)$$

Подставив уравнение (5) в (4) и проведя преобразования, получаем уравнение зависимости обратной величины удельного удерживаемого объема от мольной доли адсорбата в подвижной фазе

$$\frac{1}{V_{R}^{\prime}} = \frac{\left[1 + \left(K - 1\right)X\right]^{2}}{a \ m \ v \ m \ K}$$
(6)

или в линейном виде

$$\sqrt{\frac{v_m}{V_R'}} = \frac{1}{\sqrt{a_m K}} + \frac{K - 1}{\sqrt{a_m K}} X.$$
 (7)

Таблица З

Хроматографические и адсорбционные параметры хроматографической системы сорбат – н-гексан – гидроксилированный силикагель (температура комнатная)

$X \cdot 10^4$	<i>X/а</i> , г/моль	<i>I / V′_R</i> , г/л	<i>X/а</i> (расчет из <i>V</i> ' _{<i>R</i>})					
анизол								
1.031	8.150	66.426	8.811					
1.788	8.476	70.428	9.027					
2.884	8.725	78.311	9.340					
4.346	9.319	88.028	9.758					
5.951	9.933	97.587	10.217					
7.334	10.498	108.885	10.612					
8.522	10.465	111.344	10.951					
16.075	12.768	147.484	13.109					
21.358	14.569	194.610	14.618					
28.896	16.093	245.388	16.772					
39.833	18.355	364.324	19.890					
бензол								
32.63	138.9	1271.9	_					
53.17	147.2	1334.6	-					
68.90	146.1	1357.1	_					
83.98	146.7	1394.5	-					
93.86	135.3	1414.0	-					

Рис. 5. Зависимость удерживания анизола от его мольной доли (X) в подвижной фазе в координатах уравнения 1 - (7), 2 - (6)

Таким образом, возможны два пути использования результатов хроматографических измерений для описания изотермы сорбции из бинарного раствора и проверки выполнимости используемого уравнения адсорбции. Можно, применив метод Глюкауфа, рассчитать из каждой хроматограммы величины равновесной адсорбции и концентрации, построить изотерму адсорбции и по уравнению (3) рассчитать константы К и а". Но возможен и другой путь – определить константы адсорбционного уравнения (1) непосредственно из хроматографических данных $V'_{R} = f(X)$, используя уравнение (7), а затем построить изотерму адсорбции. Во втором методе обработки хроматографических данных, так же как в методе Хубера [4], исключается влияние диффузионного размывания хроматографических пиков.

На рис. 4, 5 в координатах уравнений (3), (6) и (7) представлены зависимости, полученные непосредственно из хроматографических данных (рис. 5) и из изотерм, рассчитанных по методу Глюкауфа (рис. 4). Видно, что уравнения (3) и (7) достаточно хорошо передают линейный характер этих зависимостей, что свидетельствует о применимости уравнения изотермы (1) для описания изученной хроматографической системы. Следует отметить, что в случае использования параметров удерживания V'_R и концентрации X, измеряемых непосредственно в хроматографическом опыте, линейная зависимость выполняется лучше, чем для изотерм, рассчитанных методом Глюкауфа, так как при этом расчете вносятся дополнительные ошибки, обусловленные в основном тем, что не учитывается диффузионное размывание пиков.

Рассчитанные методом регрессионного анализа из уравнений (3) и (7) значения K и a_m достаточно близки (табл. 2), а некоторое их различие, по-видимому, связано с отмеченным выше диффузионным размыванием пиков в используемом методе Глюкауфа [9].

Использование величин K и a_m , рассчитанных по уравнению (7) непосредственно из хроматограмм, позволило построить изотерму сорбции (рис. 2). Из рис. 2 видно, что изотермы, рассчитанные по методу Глюкауфа и по уравнению (3) (с коэффициентами Kи a_m , найденными по уравнению (7)), находятся в хорошем согласии.

Для слабо адсорбирующегося бензола величина удерживания с увеличением пробы уменьшалась всего на 16 мкл, т.е. приблизительно на 10 % (табл. 1), что не позволяло использовать метод Глюкауфа для определения констант K и a_m уравнения (3).

В случае использования параметров удерживания, измеряемых с высокой точностью (до 1–1,5 мкл) удалось рассчитать эти константы (табл. 2) и построить изотерму адсорбции. Как видно из рис. 3, расчетная и экспериментальная изотермы различаются в пределах погрешности эксперимента.

Как видно из изотерм сорбции (рис. 2, 3), и рассчитанных значений *K*, бензол взаимодействует с поверхностью гидроксилированного силикагеля слабее, чем анизол, вследствие способности атома кислорода анизола образовывать водородную связь с поверхностными силанольными группами, а также его большей полярности (дипольные моменты бензола и анизола равны 0 и 1.24 D [10] соответственно). Аналогичным образом по значениям K и a_m , полученным из уравнения (7), был построен график зависимости величины X/a (расчетная) от мольной доли X анизола в подвижной фазе (рис. 4), хорошо согласующейся с кривой, построенной из данных табл. 3 (метод Глюкауфа).

Таким образом, хроматографический метод позволяет, с одной стороны, надежно измерять (метод Глюкауфа) изотермы адсорбции из растворов в области низких концентраций, а с другой – достаточно точно (в пределах ошибки эксперимента) рассчитывать изотермы непосредственно из параметров удерживания (по максимумам пиков).

СПИСОК ЛИТЕРАТУРЫ

- Экспериментальные методы в адсорбции и газовой хроматографии / под ред. Ю.С. Никитина, Р.С. Петровой. 1990.
- 2. Киселев А.В. Межмолекулярные взаимодействия в адсорбции и хроматографии. М., 1986.
- Зверев С.И., Ларионов О.Г., Чмутов К.В. // ЖФХ. 1974. 48. С. 1556.
- 4. Huber J.F.K., Gerritse R.G. // J. Chromatogr. 1971. 58. P. 134.
- Chuduk N.A., Eltekov Yu.A., Kiselev A.V. // J. Coll. Interface Sci. 1981. 48. P. 149.
- 6. Davydov V.Ya., Kiselev A.V., Sapojnikov Yu.M. // Chromatographia. 1980. 13. P. 745.
- Ланин С.Н., Никитин Ю.С., Сыроватская Е.В. // ЖФХ. 1993.
 67. С. 1658.
- Kalambet Yu. A., Kozmin Yu. P., Perelroyzen M.P. // J. Chromatog. 1991. 542. P. 247.
- 9. Glueckauf E. // J. Chem. Soc. 1947. P. 1302.
- 10. *Осипов О.А., Минкин В.И.* Справочник по дипольным моментам. М., 1965.

Поступила в редакцию 04.03.97