## ФИЗИЧЕСКАЯ ХИМИЯ

## удк 535.338.41+539.193 ВЫЧИСЛЕНИЕ РАВНОВЕСНОЙ СТРУКТУРЫ МОЛЕКУЛЫ H<sub>2</sub>O<sub>2</sub> И УТОЧНЕНИЕ ЕЕ ТОРСИОННОГО ПОТЕНЦИАЛА

В.И. Тюлин, П.А.Л. Бачи-Том., В.К. Матвеев

(кафедра физической химии)

Приведен критический обзор последних теоретических и экспериментальных работ, посвященных построению потенциальной функции внутреннего вращения (ПФВВ) молекулы  $H_2O_2$ . Предложен новый эмпирический подход к расчету равновесной конфигурации молекулы, в результате которого удалось существенно сблизить экспериментальные и расчетные значения уровней энергии и вращательных постоянных. Заново построен потенциал  $V(\phi)$ ; релаксация геометрических параметров при изменении  $\phi$  введена как усредненный результат квантовомеханических расчетов, равновесное значение торсионного угла  $\phi = 115,16^\circ$ .

Молекула перекиси водорода является простейшим представителем молекул, обладающих внутренним вращением. Ее изучению посвящено большое количество как экспериментальных, так и теоретических работ [1 – 12]. Молекулу перекиси водорода изучали методом исследования ИК-спектров [5 – 8], методом электронографии [9] и нейтронографии [10]. Изучены ее микроволновые спектры [3], измерены дипольные моменты [11], проведен рентгено-структурной анализ [12] и т. д. Были определены вращательные постоянные для различных торсионных уровней и ангармонические значения колебательных частот. Потенциальная функция внутреннего вращения (ПФВВ) и приведенный момент

 $V(\varphi) = V_0 + \Sigma V_n \cos n\varphi \quad , \tag{1}$ 

$$\alpha(\varphi) = \alpha_0 + \sum \alpha_n \cos n\varphi$$
, rge  $n = 1, 2, 3, ..., (2)$ 

были представлены в виде зависимости от неплоского угла  $\phi$ , где значение  $\phi = 0$  соответствует *цис*-изомеру.

Первые обзорные работы, посвященные H<sub>2</sub>O<sub>2</sub> и D<sub>2</sub>O<sub>2</sub> [13, 14], были подвергнуты серьезной критике [15, 19]. В [19] был отмечен целый ряд противоречий, прежде всего то, что углы ф для равновесной конфигурации и для минимума потенциальной энергии заметно различаются. В теоретических работах была сделана попытка найти геометрическую структуру, соответствующую минимуму потенциала [11, 12, 15, 17, 20 – 22, 32] (табл. 1). Однако теоретические и экспериментальные данные оказались несовместимыми, так как параметры равновесной структуры экспериментально не были определены.

Наилучшие теоретические расчеты выделить трудно, поскольку искомые квантовомеханические базисы, наиболее точно соответствующие данной молекуле, заранее 2–1038 неизвестны. В последние годы были получены весьма точные данные как по вращательным постоянным, так и по торсионным уровням энергии для  $H_2O_2$  и  $D_2O_2$ [23]. Однако главной трудностью остается отсутствие равновесной геометрической структуры, которая должна точно соответствовать вращательным постоянным всех торсионных уровней энергии [6, 15 – 19].

Таким образом, анализ экспериментальных и теоретических данных показывает, что работа по определению ПФВВ молекулы  $H_2O_2$  не завершена. По-прежнему существует серьезное противоречие: реальный минимум потенциала неизвестен и в разных работах он заметно различается по утлу  $\phi_{\text{мин}}$ .

Многие авторы [3, 5, 8, 9, 16, 24 – 25] пытались определить наиболее точные параметры равновесной структуры, но до сих пор полную  $r_e$ -структуру получить не удалось. Главная причина заключается в том, что не исследован изотопический образец  $H_2O_2$  с <sup>18</sup>O. Тем не менее были сделаны приближенные оценки  $r_s$ - и  $r_e$ -структур [14], показывающие небольшое между ними расхождение. Таким образом, приближенные значения геометрических параметров более или менее известны:  $r_e(O-O) \cong 1,463 \pm 0,003$  Å и  $r_e(O-H) \cong 0,964 \pm 0,005$  Å, что соответствует лучшим расчетным значениям, но не соответствует высокой точности экспериментальных вращательных постоянных.

Хачкурузов с сотр. [1 - 3], пытался оценить равновесные вращательные постоянные  $A_e$ ,  $B_e$  и  $C_e$  с помощью величин  $\alpha_i$ , показывающих изменение вращательных постоянных для разных колебательных частот. Однако, вопервых, оценки величин  $\alpha_i$  оказались неточными и, во-вторых, для крутильной частоты  $\omega_4 \sim 314$  см<sup>-1</sup> постоянная  $\alpha_e$ 

Таблица 1

Параметр  $R_{(0-0)}$ Zα Литер. ссылка ∠φ ľ(O-H) CC-PVDZ 1.4699 0.9714 98.85 117.95 [20] CC-PVTZ 1.4579 0.9640 99.55 113.9 [20] GVB+1+2 \*\* 1.456 0.956 99.9 115.0 [15] 99.60 GVB+1+2+OC\*\* 1.462 0.9640 113.4 [19] 1.390 0.945 102.8 114.9 4s3p1d/2s1p Basis D [11] RHF/ [4s3p1d/2s1p] 1.392 0.946 102.5 113.7 [22] CCSD(T) 1.4525 0.9627 99.91 112.46 [17,20] STO-3G Basis A 1.396 1.001 101.1 125.3 [32] (1.443)\*  $(120.0)^{*}$  $(1.027)^{*}$ (98.8)\* [11] 0.956 102.3 3s2p/2s Basis B 1.46 120.0 [15]  $(1.560)^{*}$  $(0.988)^*$ (97.9)\*  $(120.0)^*$ [11] 1.396 0.946 3s2p1d/2s Basis C 102.3 116.3 [33]  $(1.466)^*$  $(0.975)^*$  $(98.7)^*$  $(120.6)^*$ [11] 1.396 3s2p1d/2s1p Basis D 0.946 102.3 116.3 [11]  $(0.967)^*$  $(1.464)^*$  $(98.7)^*$  $(119.4)^*$ 

Структурные параметры молекулы H<sub>2</sub>O<sub>2</sub> по данным квантовомеханических расчетов

\* Структурные параметры H2O2 определены при использовании MP2.

\*\* 4s3p2d1f/3s2p (значения R и г даны в Å, ∠α и ∠φ – в градусах).

до сих пор не измерена. Такой подход не очень логичен, так как сложность потенциала  $V(\phi)$  показывает, что обычно применяемые оценки величин  $\alpha_i$  для  $\omega_4$  не дают правильного ответа. В последние годы для этой цели стали применять иные подходы: вращательные постоянные для различных  $v_i$  пытались описывать эмпирической зависимостью от среднего значения  $\phi$ , которое определяли как среднее по волновым функциям для конкретного торсионного уровня. Однако эта попытка и не могла дать удовлетворительного результата, потому что параметры самого потенциала точно не известны.

Мы решили подойти к этой проблеме другим путем. Поскольку вращательные постоянные известны, мы попытались построить эти эмпирические зависимости не от угла  $\varphi$ , а прямо от торсионных уровней энергии [6]. Построение соответствующих графиков показывает, что не наблюдается плавных зависимостей вращательных постоянных  $A_v$ ,  $B_v$ ,  $C_v$  ( это относится ко всем значениям  $E_{n,t}$ ), поскольку из-за сложной формы потенциала  $V(\varphi)$ существуют резонансные "выбросы" вращательных постоянных для отдельных расщепленных кругильных уровней (рис. 1 – 3).

Введение отдельных зависимостей для возмущенных подуровней позволило описать эмпирически все три фун-

кции  $A_v$ ,  $B_v$ ,  $C_v$  в зависимости от  $E_v$  с точностью более высокой, чем в работе [6] (табл. 2).

После вычисления  $A_e$ ,  $B_e$ ,  $C_e$  была проведена оптимизация геометрических параметров через производные от соответствующих моментов инерции. Полученные результаты представлены в табл. 3, 4. Расчет приведенных моментов был произведен в двух приближениях: "жесткий волчок" (геометрия не зависит от  $\varphi$ ) и "нежесткии волчок" (имеет место зависимость от  $\varphi$ ).

Оказалось, что в приближении "жесткий волчок" зависимость  $F(\varphi)$  соответствует работам Хачкурузова и др. [1 - 4, 8, 24 - 25], что указывает на их недостаточность. Квантовомеханические (КМ) расчеты ясно показывают, что изменение геометрических параметров в зависимости от  $\varphi$ значительно [18 - 22, 24]. В настоящее время ввести эту "нежесткость" довольно легко, поскольку проведены серьезные КМ-расчеты. Заметим, что хотя конкретные геометрические параметры, соответствующие разным  $\varphi$ , в различных базисах заметно различаются [13, 17, 18], сами разности в точках "*цис*", "*транс*" и "гош" практически совпадают (табл. 5).

Принимая усредненные разности этих изменений и учитывая работы [18, 19], мы построили соответствущие графики зависимости *F* от θ.

### Таблица 2

# Вращательные постоянные H<sub>2</sub>O<sub>2</sub> для различных уровней крутильного колебания (в см<sup>-1</sup>)

| Уровень |     | Α                  |            |                          | В                  |            |                          | C                  |            |                          |
|---------|-----|--------------------|------------|--------------------------|--------------------|------------|--------------------------|--------------------|------------|--------------------------|
| n       | τ   | эксперимент<br>[6] | расчет [6] | расчет *<br>(наст. раб.) | экспернмент<br>[6] | расчет [6] | расчет *<br>(наст. раб.) | эксперимент<br>[6] | расчет [6] | расчет *<br>(наст. раб.) |
| 0       | 1,2 | 10.06941           | 10.06986   | 10.06941                 | 0.873691           | 0.873626   | 0.873691                 | 0.837861           | 0.837937   | 0.837861                 |
| 0       | 3,4 | 10.05983           | 10.05897   | 10.05983                 | 0.872014           | 0.871997   | 0.872014                 | 0.840586           | 0.840553   | 0.840586                 |
| 1       | 1,2 | 10.04866           | 10.04840   | 10.04866                 | 0.876354           | 0.876285   | 0.876354                 | 0.828433           | 0.828487   | 0.828433                 |
| 1       | 3,4 | 10.00156           | 10.00246   | 10.00156                 | 0.869069           | 0.869328   | 0.869128                 | 0.838739           | 0.838508   | 0.838739                 |
| 2       | 1,2 | 9.96725            | 9.96631    | 9.96725                  | 0.86663            | 0.866870   | 0.866511                 | 0.839120           | 0.838910   | 0.839120                 |
| 2       | 3,4 | 9.92640            | 9.92730    | 9.92640                  | 0.86295            | 0.862510   | 0.863037                 | 0.84210**          | 0.842480   | 0.84210**                |
| 3       | 1,2 | 9.88970            | 9.8892     | 9.88970                  | 0.85842            | 0.858530   | 0.858397                 | 0.84475            | 0.844675   | 0.84475                  |
| 3       | 3,4 |                    |            | (9.85573)                |                    |            | (0.85203)                | · · · ·            |            | (0.85257)                |

\*

| A                                     | В                     | · · · · · · · · · · · · · · · · · · ·        | С                                    |                                                              |  |
|---------------------------------------|-----------------------|----------------------------------------------|--------------------------------------|--------------------------------------------------------------|--|
| $Y_1 = (ab + cx^{d})/(b + x^{d})$     | $Y_1 = 1/(a+bx+cx^2)$ | a = 1.1461<br>b = 0.0157<br>c = 0.12430      | $Y_1 = (a+bx)/(1+cx+dx^2)$           | a = 0.842515<br>b= -0.227313<br>c= -0.255258<br>d= -0.013748 |  |
| $Y_2 = (ab+cx^{\circ})/(b+x^{\circ})$ | $Y_2 = a + bx + cx^2$ | a = 0.872523<br>b = 0.005458<br>c = 0.008427 | Y <sub>2</sub> =a+bx+cx <sup>2</sup> | a= 0.842515<br>b= -0.023607<br>c= -0.022615                  |  |

\*\*Вращательная структура торсионного уровня n = 2 (τ = 3, 4) возмущена из-за Ферми-резонанса во вращательной структуре.

|                        | Литературная ссылка |                 |                   |                 |                 |  |  |  |
|------------------------|---------------------|-----------------|-------------------|-----------------|-----------------|--|--|--|
| Геометр.<br>параметр   | [3]                 | [14]            | [16]              | [9]             | Наст.<br>работа |  |  |  |
| R <sub>(0-0)*,</sub> Å | 1.452<br>±0.004     | 1.464<br>±0.003 | 1.4644<br>±3.0035 | 1.467           | 1.4629          |  |  |  |
| <sup>г</sup> (о-н) , Å | 0.965<br>±0.005     | 0.964<br>±0.001 | 0.965(ass)        | 0.965<br>±0.005 | 0.9641          |  |  |  |
| ∠α , град              | 100<br>±1.0         | 99.4<br>±1.2    | 94.44<br>±1.9     | 98.5<br>±1.0    | 99.43           |  |  |  |
| ∠ф, град               | 119.1<br>±1.8       | 120.3<br>±0.7   | 111.83<br>±6.8    | 120.0<br>±2.0   | 115.16          |  |  |  |

|             |           | Таблица З                                                                       |
|-------------|-----------|---------------------------------------------------------------------------------|
| Структурные | параметры | молекулы H <sub>2</sub> O <sub>2</sub> по данным экспериментальных исследований |

\*Значения R<sub>(0-0)</sub> получены также методами нейтронографии [10] (1.47 Å) и рентгеноструктурного анализа [12] (1.49Å).

Значения ∠ф, приведенные в работах [5] и [31], составляют 111,5 и 119,8° соответственно.

Таблица 4

Расчет вращательных постоянных H<sub>2</sub>O<sub>2</sub> по структурным параметрам и экспериментальные значения A<sub>e</sub>, B<sub>e</sub>, C<sub>e</sub> ( cm<sup>-1</sup>)

| Вращательная<br>постоянная | Расчет из структурных<br>данных | Расчет по эмпирическим кривым | $\Delta = \times 10^{-5}$ |  |  |
|----------------------------|---------------------------------|-------------------------------|---------------------------|--|--|
| A.                         | 10.070092                       | 10.070100                     | 0.8                       |  |  |
| Be                         | 0.872519                        | 0.872523                      | 0.4                       |  |  |
| C,                         | 0.842516                        | 0.842515                      | -0.1                      |  |  |
|                            |                                 |                               |                           |  |  |

|                                                           | Геом.                                                                                                                                                                                                                                    | "цис"                              | Δ <sub>1</sub>              | минимум                              | $\Delta_2$                   | "транс"                             | Лигер.          |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|--------------------------------------|------------------------------|-------------------------------------|-----------------|
|                                                           |                                                                                                                                                                                                                                          |                                    |                             |                                      |                              |                                     | ссылка          |
| Принято<br>Д <sub>1</sub> и Д <sub>2</sub> от<br>минимума | R(O-O)<br>r(O-H)<br><α                                                                                                                                                                                                                   |                                    | 0.00872<br>0.00038<br>4.378 |                                      | 0.01074<br>0.00098<br>-1.418 |                                     | [13,17,18]      |
|                                                           | R(O-O)<br>r(O-H)<br><a<br><p< td=""><td>1.47162<br/>0.96448<br/>103.805<br/>0</td><td></td><td>1.4629<br/>0.9641<br/>99.427<br/>115.16</td><td></td><td>1.47364<br/>0.96508<br/>98.009<br/>180</td><td>Наст.<br/>работа</td></p<></a<br> | 1.47162<br>0.96448<br>103.805<br>0 |                             | 1.4629<br>0.9641<br>99.427<br>115.16 |                              | 1.47364<br>0.96508<br>98.009<br>180 | Наст.<br>работа |





Рис. 1. Зависимость  $Y_i = A_n = \Phi_A(X)$ ,  $X = E_{n,\tau} + E_0$ 







Таблица 5

Рис. 3. Зависимость  $Y = C = \Phi_{C}(X)$ .  $X = E + E_{CC}$ 



Рис. 4. Зависимость  $F(\theta) = F_0 + \sum F_k \cos \theta (\text{см}^{-1})$ : 1 – приближение жесткого волчка, 2 – приближение нежесткого волчка

| φ                                                 | 0       | 30             | 60             | 90             | 115.16                | 120     | 150                | 180     |  |
|---------------------------------------------------|---------|----------------|----------------|----------------|-----------------------|---------|--------------------|---------|--|
| θ                                                 | 180     | 150            | 120            | 90             | 64.84                 | 20      | 30                 | 0       |  |
| R                                                 |         |                |                |                |                       |         |                    |         |  |
| (0-0)                                             | 1.4721  | 1.4670         | 1.4616         | 1.4605         | 1.4629                | 1.4639  | 1.4699             | 1.4736  |  |
| r                                                 |         | •              |                |                |                       |         |                    |         |  |
| (O-H)                                             | 0.9644  | 0.9643         | 0.9650         | 0.9647         | 0.9641                | 0.9639  | 0.9634             | 0.9631  |  |
| Zα                                                | 103.807 | 103.357        | 101.687        | 100.327        | 99.427                | 99.147  | 98.287             | 98.007  |  |
| <i>F</i> (θ)                                      |         |                |                |                |                       |         |                    |         |  |
| нежест.                                           | 42.2823 | 41.9322        | 40.8141        | 40.0026        | 39.5604               | 39.4702 | 39.170             | 39.0971 |  |
| $F(\theta) = F_0 + \Sigma F_k \cos k \phi \theta$ |         |                |                |                |                       |         |                    |         |  |
| F <sub>0</sub>                                    |         | F <sub>2</sub> | F <sub>3</sub> | F <sub>4</sub> | <i>F</i> <sub>5</sub> | $F_6$   | F <sub>min</sub> . |         |  |
| 40.3551                                           | -1.5546 | 0.3640         | -0.0829        | 0.0010         | 0.0449                | -0.0205 | 39.5604            |         |  |

### Таблица б Учет релаксации структурных параметров $H_2O_2$ и зависимость: $F(\phi) = F_0 + \Sigma F_k \cos k \phi$

#### Таблица 7

Уровни энергии торсионных колебаний молекулы H<sub>2</sub>O<sub>2</sub> (см<sup>-1</sup>)

| T N        | 0                  | 1                  | 2                  | 3                     | V                                                        | Литература   |
|------------|--------------------|--------------------|--------------------|-----------------------|----------------------------------------------------------|--------------|
| 1,2<br>3,4 | 172.58<br>184.017  | 427.130<br>543.473 | 742.323<br>948.700 | 1173.480              | $V_{\text{транс}} = 387.07$<br>$V_{\text{цнс}} = 2562.8$ | [6]          |
| 1,2<br>3,4 | 169.807<br>180.869 | 423.986<br>540.329 | 739.179<br>945.551 | 1170.318<br>(1609.51) | $V_{\text{транс}} = 386.9$<br>$V_{\text{цякс}} = 2141.5$ | наст. работа |

Таблица 8 Сравнение вычисленных и экспериментальных торсионных уровней (см<sup>-1</sup>)  $2V(\theta) = \sum V n(1 - \cos n \theta)$ 

| n | τ   | $V_{_{3KC}}$ | V <sub>pacu</sub> | Δν     |
|---|-----|--------------|-------------------|--------|
| 0 | 1,2 | 0            | 0                 | 0      |
| 0 | 3,4 | 11.437       | 11.475            | 0.038  |
| 1 | 1,2 | 254.550      | 254.569           | -0.019 |
| 1 | 3,4 | 370.893      | 370.881           | -0.012 |
| 2 | 1,2 | 569.743      | 569.701           | -0.042 |
| 2 | 3,4 | 776.115      | 776.167           | 0.052  |
| 3 | 1,2 | 1000.882     | 1000.865          | -0.017 |



Видно, что "нежесткость" молекулы  $H_2O_2$  резко изменяет кривую  $F(\theta)$  для жесткого волчка (рис. 4.):

$$F(\theta) = F_0 + \Sigma F_n \cos n \theta$$

Заметим, что наиболее близким к равновесной геометрии оказался базис GVB + 1 + 2 + QC [19], хотя и для него имеются еще небольшие различия в значении двугранного угла  $\varphi$ .

Ранее ПФВВ была представлена в виде ряда Фурье уравнениями (1) и (2). Эта форма по ряду причин явно недостаточна, в настоящее время общая форма ПФВВ принята в другом виде

$$2V(\theta) = \sum V_n (1 - \cos n \theta)$$
, где  $\theta = 180^\circ - \phi$ . (4)

Такая форма потенциала возможна, конечно, только в том случае, когда на кривой потенциальной функции есть хотя бы одна симметричная точка. Здесь таких точек две: "*чис*" и "*транс*". Ранее начальную точку потенциала выбирали в точке "цис" ( $\phi = 0^{\circ}$ ), от нее обычно отсчитывают неплоский угол. Мы принимаем начальное значение функции (4)  $\theta = 0^{\circ}$  ( $\phi = 180^{\circ}$ ), т.е. соответствующее *транс*форме. Такой подход более удобен и для других молекул [26]. Дело в том, что нулевая точка  $V(\phi)$  по ряду соображений должна быть ближе к минимуму потенциала, но выбирать ее в самом минимуме для  $H_2O_2$  нельзя из-за асимметричной формы потенциальной ямы.

После того как "истинная" зависимость  $F(\varphi)$  была найдена, и первые приближения искомого потенциала  $V(\varphi)$ показали, что уровни легко подгоняются, были найдены коэффициенты:  $V_1$ ,  $V_2$ ,  $V_3$  и  $V_4$ . Стало ясно, что ранее по-5-1038 лученные потенциалы были недостаточно точны, так как теперь  $E_{0,0}$  – значение нулевого уровня (n = 0) оказалось равным 169,81, а не 172,58 см<sup>-1</sup> [6] (табл. 7).

Эта поправка сдвигает все экспериментальные уровни. Были вновь построены графики зависимости  $A_v$ ,  $B_v$  и  $C_v$  от  $E_{n,\tau}$  (рис. 1, 2, 3), вычислены новые значения  $A_e$ ,  $B_e$ , и  $C_e$  и вновь оптимизирована геометрия. Естественно, что это второе приближение по геометрии и вращательным постоянным отличается от предыдущего лишь незначительно. Это позволило подогнать расчетные уровни еще точнее (табл. 8) и получить более надежные значения  $V(\phi)$ (рис. 5) (табл. 9).

Как видно из табл. 1, 3, 4, нам удалось получить равновесную геометрию молекулы  $H_2O_2$ , которая, с одной стороны, соответствует расчетам серьезных теоретических работ, а с другой – экспериментальным значениям вращательных постоянных  $A_v$ ,  $B_v$  и  $C_v$ . Таким образом, главное противоречие, существующее ранее, удалось, как нам кажется, снять.

Однако в настоящей работе не рассматривали другие экспериментальные данные для  $H_2O_2$  (дипольные моменты, интенсивность ИК-переходов и т. д.). Кроме того, в настоящей работе использовали уровни энергии только для  $H_2O_2$  ( не для  $D_2O_2$ ).

Таким образом, впервые в современной стандартной форме ПФВВ получен достаточно точный потенциал V(φ), хорошо воспроизводящий одновременно и вращательные постоянные и крутильные уровни энергии.

Уточнено значение релаксации геометрических параметров при изменении угла  $\varphi$ , как среднее по КМ-работам [15, 17, 19 – 22] (табл. 5).

Получено новое значение неплоского угла  $\varphi$  для равновесной конфигурации  $\varphi = 115,16^{\circ}$  ( $\theta = 64,84^{\circ}$ ), лучше совпадающее с минимумом потенциала  $\varphi = 112,04^{\circ}$ ( $\theta = 68,0^{\circ}$ ). Однако расхождения этих величин еще заметны, они обусловлены, в основном, недостаточностью модели одномерного внутреннего вращения, реализованной в программе TORSIO [27], не учитывающей торсионно-вращательное взаимодействие.

Настоящее исследование показывает, что даже простейшие молекулы с внутренним вращением являются довольно сложными экспериментальными объектами, где многие стандартные методы и программы, а также простые модели оказываются недостаточными. Мы имеем в виду не только ряд обрабатывающих методик, но и множество теоретических работ, так как наиболее подходящие базисы в КМ-расчетах для конкретных молекукл заранее неизвестны. Многие известные экспериментальные данные для  $H_2O_2$  и  $D_2O_2$  (дипольные моменты, значения некоторых термодинамических характеристик [28 –30], интенсивность ИК-спектров [5 – 7] и т.д) не были задействованы, поэтому их учет должен неизбежно привести к дальнейшему усложнению модели.

В заключение авторы благодарят проф. Ю.А. Пентина за интерес к работе, а также А.В. Абраменкова за помощь в реализации новых программ.

Таблица 9

| I. $V(\phi) = V_0^* + \Sigma V_k^* \cos k \phi (B \text{ cm}^{-1})$ |                |                       |                       |                |                |                    |                    |              |                 |  |
|---------------------------------------------------------------------|----------------|-----------------------|-----------------------|----------------|----------------|--------------------|--------------------|--------------|-----------------|--|
| ∠ф <sub>ини</sub>                                                   | V 0            | <i>V</i> <sub>1</sub> | V*2                   | <i>V</i> *3    | V.             | , V <sub>TPA</sub> | IHC                | V            | лите-<br>ратура |  |
| 119.1±2                                                             | 821.46         | 1019.52               | 643.92                | 43.80          | 67.08          | 469.1              | 3 2:               | 595.8        | [4]             |  |
| 111.5                                                               | 787            | 993                   | 636                   | 44             | -              | 386                | 24                 | 460          | [5]             |  |
| 111.9±0.4                                                           | 645.1          | 1036.97               | 657.53                | 50.89          | 2.524          | 387.0              | 7 2                | 562.8        |                 |  |
|                                                                     | ±15.4          | ±23.1                 | ±5.2                  | ±3.30          | ±0.83          | ±0.20              | ±                  | 6.00         | [6]             |  |
| 111.9                                                               | 802            | 1014                  | 641                   | 42             | -              | 387                | 2                  | 499          | [14]            |  |
| 111.8                                                               | -              | 1037.3                | 646.8                 | 46.7           | 2.4            | 384.9              | (7) 2<br>(9        | 487.6<br>94) | [16]            |  |
| 111.5                                                               | 797            | 888                   | 532                   | 77             | -              | 371                | 2                  | 490          | [25]            |  |
| $\Pi. 2 V(\theta) = \Sigma V n(1 - \cos n \theta) (B CM^{-1})$      |                |                       |                       |                |                |                    |                    |              |                 |  |
| Ө <sub>мин</sub>                                                    | V <sub>1</sub> | <i>V</i> <sub>2</sub> | <i>V</i> <sub>3</sub> | V <sub>4</sub> | V <sub>5</sub> | V <sub>6</sub>     | V <sub>транс</sub> |              | unic            |  |
| 67.96                                                               | 2040.6         | -1297.7               | 99.4                  | -9.6           | 1.5            | -0.5               | 386.9              | 2            | 141.5           |  |
| ( <b>φ=112.04</b> )                                                 | ±7.0           | ±5.0                  | ±3.7                  | ±2.4           | ±0.7           | ±0.4               | ±2.0               | ±            | 10.0            |  |

#### Торсионные потенциалы внутреннего вращения молекулы H<sub>2</sub>O<sub>2</sub>

Примечания. І.  $V(\phi) = V_0^* + V_1^* \cos \phi + V_2^* \cos 2\phi + V_3^* \cos 3\phi + ...(a)$ 

II.  $V(\varphi) = 1/2\Sigma V_n (1 - \cos n\varphi) = 1/2\Sigma V_n - 1/2\Sigma V_n \cos n\varphi = 1/2\Sigma V_n + 1/2V_1 \cos \theta - 1/2V_2 \cos 2\theta + 1/2V_3 \cos 3\theta + ...(b).$ 

При сравнении уравнений (а) и (b), учитывая, что  $\theta = \pi - \varphi$ , получаем:  $V_0^* = 1/2\Sigma V_n V_1^* = 1/2V_1, V_2^* = -1/2V_2, V_3^* = 1/2V_3 \dots$ 

Работа выполнена в рамках проекта uni-02395 программы "Университеты России" (химия).

#### СПИСОК ЛИТЕРАТУРЫ

1. Хачкурузов Г. А., Пржевальский И.Н. //Опт. и спектр. 1972. 33. С. 127.

2. Хачкурузов Г.А., Пржевальский И.Н. // Опт. и спектр. 1973. **35.** С. 374.

3. Хачкурузов Г.А., Пржевальский И.Н. //Опт. и спектр. 1974. 36. С. 2, 175.

4. Хачкурузов Г.А., Пржевальский И.Н. // Опт. и спектр. 1976. **41**. С. 323.

5. Hunt R.H., Leacock R.A., Peters C.W., Hecht K.T. // J. Chem. Phys. 1965. 42. C. 1931.

6. Flaud J.M., Camy-Peyret C., Johns W.C. // J. Chem. Phys. 1989. 91. C. 1504.

7. Perrin A., Flaud J.M., Camy-Peyret C. // J. Mol. Spectr. 1996. 176. C. 281.

8. Oelfke W.C., Gordy W. //J. Chem. Phys. 1969. 51. C. 5336.

9. Busing W.R., Levy H.A. // J. Chem. Phys. 1965. 42. C. 3054.

10.Giguere P.A., Schomaker V. // J. Am. Chem. Soc. 1943. 65. C. 2025. 11. Cremer D.J. // J. Chem. Phys. 1978. 69. C. 4440.

12. Abrahams S.C., Collin R.L., Lipscomb W.N. // Acta crystr. 1951. 4. C. 15.

13. Термодинамические свойства индивидуальных веществ. // Под ред. В.П. Глушко. Т.1. М., 1962.

14. Термодинамические свойства индивидуальных веществ. // Под ред. В.П. Глушко. Т.1. М., 1978.

- 15. Harding L.B. // J. Phys. Chem. 1989. 93. C. 8004.
- 16. Koput J. // J. Mol. Spectrosc. 1986. 115. C. 438.
- 17. Koput J. // Chem. Phys. Let. 1995. 236. C. 516.
- 18. Carpenter J.E., Weinhold F.// J. Phys. Chem. 1988. 92. C. 4295.
- 19. Carpenter J.E., Weinhold F. //J. Phys. Chem. 1988. 92. C. 4306.
- 20. Rendell A.P., Lee T.J.//J. Chem. Phys. 1994. 101. C. 400.
- 21. Dunning T.H.Jr., Winter I.V. // J. Chem. Phys. 1975. 63. C. 1847.
- 22. Dunning T.H.Jr. // J. Chem. Phys. 1989. 90. C. 1007.
- 23. Hunt R.H., Leacock R.A. // J. Chem. Phys. 1966. 45. C. 3141.
- 24. Scuseria G.E., Lee T.J. //J. Chem. Phys. 1990. 93. C. 5851.

25. Dahkis M.N., Lugovskii A.A., Daschevskii V.G. //Opt. Spectrosc. 1972. 3. C. 243.

26. Ефимов Д.Б., Матвеев В.К., Тюлин В.И. //Вестн. Моск. ун-та. Сер.2, Химия. 1997. **38.** С. 156.

- 27. Абраменков А.В. // ЖФХ. 1995. 69. С. 1048.
- 28. Giguere P.A. // J. Chem. Thermodyn. 1974. 6. C. 1013.
- 29. Giguere P.A., Liu J.D., Dugdale J.S., Morrison J.A. // Can. J. Chem. 1954. 32. C. 117.

30. Chao J., Wilhoit R.C., Zwolinski B.J. // J. Chem. Thermodyn. 1971. 3. C. 497.

31. Redington R.L., Olson W.B., Cross P.C. // J. Chem. Phys. 1962. 36. C. 1311.

32. Lathan W.A., Curtiss L.A., Helire W.J., Lisle J.B., Pople J.A. // Progr. Phys. Organ. Chem. 1974. 2. C. 175.

33. Radom L., Hehre W.J., Pople J.A. // J. Amer. Chem. Soc. 1971. 93.C. 289.