НАУЧНАЯ СТАТЬЯ

УДК 539.193

КОЛЕБАТЕЛЬНАЯ СТРУКТУРА УФ-СПЕКТРА ПОГЛОЩЕНИЯ ВЫСОКОГО РАЗРЕШЕНИЯ МЕТИЛВИНИЛКЕТОНА В ГАЗОВОЙ ФАЗЕ

Лидия Александровна Королева¹, Александра Валерьевна Королева²

^{1, 2} Московский государственный университет имени М.В. Ломоносова **Автор, ответственный за переписку:** Лидия Александровна Королева, koroleva. msu@rambler.ru

Аннотация. Получена разрешенная колебательная структура УФ-спектра поглощения исследуемой молекулы в газовой фазе. Определены (0-0)-полосы изомеров. Найдены фундаментальные колебательные частоты и (0-v)-переходы крутильного колебания для s-*mpaнс*- и s-*цис*-изомеров молекулы в основном (S₀) и возбужденном (S₁) электронных состояниях. Проведено полное отнесение полученных 68 полос поглощения.

Ключевые слова: s-*mpaнс*-, s-*цис*-изомер, крутильное колебание, v-колебательное квантовое число, основное и возбужденное электронные состояния

Финансирование. Источник финансирования НИР: госбюджет, раздел 0110 (для тем по госзаданию).

Для цитирования: Королева Л.А., Королева А.В. Колебательная структура УФспектра поглощения высокого разрешения метилвинилкетона в газовой фазе // Вестн. Моск. ун-та. Сер. 2. Химия. Т. 63. № 6. С. 395–404.

ORIGINAL ARTICLE

VIBRATIONAL STRUCTURE OF A HIGH-RESOLUTION UV ABSORPTION SPECTRUM OF METHYL VINYL KETONE IN THE GAS PHASE

Lydia A. Koroleva¹, Alexandra V. Koroleva²

^{1, 2} Lomonosov Moscow State University

Corresponding author: Lydia A. Koroleva, koroleva.msu@rambler.ru

Abstract. The resolved vibrational structure of the UV absorption spectrum of the studied molecule in the gas phase was obtained. The 0-0 bands of isomers were identified. Fundamental vibrational frequencies and (0-v) transitions of torsional vibration for the s-trans- and s-cis-isomers of the molecule in the ground (S_0) and excited (S_1) electronic states were found. Complete assignment of the obtained 168 absorption bands was carried out.

Keywords: *s*-trans-, *s*-cis-isomer, torsional vibration, v-vibrational quantum number, ground and excited electronic states

Financial Support. Source of research funding: state budget, section 0110 (for topics on the state task).

For citation: Koroleva L.A., Koroleva A.V. Vibrational Structure of a High-Resolution UV Absorption Spectrum Of Methyl Vinyl Ketone in the Gas Phase // Vestn. Mosk. unta. Ser. 2. Chemistry. T. 63. N 6. S. 395–404.

³⁹⁵

[©] Королева Л.А., Королева А.В., 2022

Интерес к изучению заторможенного внутреннего вращения (ВВ) вокруг одинарной С–С-связи, находящейся в сопряжении с двойными связями С=С и С=О, в α , β -ненасыщенных карбонильных соединениях (I): R₁CO–CR₂=CR₃R₄, где R₁ = H, R₁ = CH₃, R₁ = F, R₁ = CI, R₁ = Br; R₂ = H, R₂ = CH₃; R₃ = R₄ = H, R₃ = CH₃, и в бензойных соединениях (II): C₆H₅–COR, где R = H, R = CH₃, R = F, R = CI, R = Br, наблюдается у различных групп исследователей в течение нескольких десятилетий [1–9].

Цель проведенных в настоящей работе исследований состоит в определении частот крутильного колебания и значений (0-v)-переходов этого колебания для изомеров изучаемой молекулы, их фундаментальных частот и (0-0)-полос изомеров. В наших работах для достижения поставленной цели, связанной с изучением (ВВ) соединений рядов I и II, используется метод анализа разрешенной колебательной структуры полос n-π*-перехода УФ-спектра поглощения высокого разрешения паров исследуемых соединений. Достоинство применяемого метода заключается в его информативности, так как колебательная структура УФ-спектров паров многих исследуемых соединений ряда I содержит около сотни полос поглощения (акрилоилфторид [6] и метакрилоилфторид [8]). Большинство из этих полос поглощения соответствуют определенному переходу между уровнями энергии крутильного колебания основного (S₀) и возбужденного (S₁) электронных состояний. Вероятно, это связано с высокой заселенностью уровней энергии крутильного колебания. Таким образом, в применяемом нами методе, в отличие от ИК-Фурье спектроскопии в дальней ИК-области и микроволной спектроскопии, можно определять значения частот (0-v)-переходов крутильного колебания изомеров молекулы до высоких значений колебательного квантового числа v и фундаментальные колебательные частоты, проявляющиеся при внутреннем вращении относительно одинарной связи С-С не только в основном (S_0), но и в возбужденном (S_1) электронном состоянии.

По полученным значениям частот (0-v)переходов крутильного колебания в электронном состоянии S_0 или S_1 можно построить потенциальные функции одномерного внутреннего вращения (ПФВВ) вида:

$$V(\phi) = 1/2 \sum V_n (1 - \cos n \phi),$$
 (1)

где φ — угол поворота одной группы атомов («волчка») относительно другой («остова»). Для построения $V(\varphi)$ необходимо также использовать

Вестн. Моск. ун-та. Сер. 2. Химия. 2022. Т. 63. № 6 Vestn. Mosk. un-ta. Ser. 2. Chemistry. 2022. Т. 63. № 6

вращательную постоянную $F(\phi)$ с разложением ее в ряд Фурье.

До настоящего времени мы изучали нашим методом внутреннее вращение вокруг С-Ссвязи для соединений, которые являются производными альдегидов, где $R_1 = H$, $R_1 = F$, $R_1 = CI$. Настоящая работа посвящена изучению заторможенного (ВВ) паров метилвинилкетона СН₃-С(О)СН=СН₂ (3-бутен-2-он) – простейшего ненасыщенного кетона. Метилвинилкетон легко полимеризующая летучая жидкость с раздражающим запахом (T_{кип} = 81,4 °C). Он используется в процессах получения полимеров для модификации их свойств. Метилвинилкетон имеет большое значение в химии атмосферы. Он содержится в выхлопных газах [10, 11], образуется при сжигании биомассы [12] и при взаимодейстии озона с изопреном [13], который выделяют деревья (дуб, тополь). Оставаясь в газовой фазе атмосферы в качестве основного продукта окисления изопрена, метилвинилкетон [14, 15] проявляет высокую реакционную способность [16]. Он оказывает большое влияние на фотохимическую активность в пограничном слое атмосферы, в частности в лесных массивах [17], и способствует уничтожению озона благодаря образованию таких соединений, как формальдегид и метилглиоксаль [13, 18]. В атмосфере он находится 10 ч [17, 19] из-за его быстрой реакции с гидроксильными радикалами. Продукты, выделяющиеся при атмосферном окислении изопрена, способствуют образованию тропосферного озона О₃ и вторичных аэрозолей [20, 21]. Эти загрязнители воздуха могут оказывать сильное влияние на радиационный баланс Земли и здоровье человека.

В работе [22] при изучении температурной зависимости ИК-спектров метилвинилкетона в жидкой фазе в температурном интервале от +30 до -75 °C и КР-спектров в интервале от +85 до +5 °C сделано предположение, что вещество существует как смесь двух плоских *s-mpaнc* и *s-цис*-изомеров. *Транс*-изомер является более устойчивым. Разность энергии между изомерами в газовой фазе метилвинилкетона определялась по изменению интегральной интенсивности полос 1249 см⁻¹ (*s-mpahc*) и 1180 см⁻¹ (*s-цис*) при изменении температуры от +20 до 200 °C. Разность энергии определяли по тангенсу угла наклона прямой, построенной в координатах:

по оси $y - \log (A_{uuc}/A_{mpahc})$, где A_{uuc} – интегральная интенсивность полосы *s-цис*-изомера, A_{mpahc} – интегральная интенсивность полосы *s-транс*-изомера;

по оси x – 1/Т [23].

Полученное в работе [23] значение разности энергии изомеров равно 565 ± 52 кал/моль⁻¹. Плоское строение скелета исследуемой молекулы подтверждено в микроволновом исследовании работы [24]. Однако авторы обнаружили в газовой фазе только s-mpanc-изомер метилвинилкетона, предполагая, что концентрация s-иис-изомера незначительна. В более позднем микроволновом исследовании метилвинилкетона находится тоже только *s-транс*-изомер [25]. В этой работе рассчитаны вращательные постоянные для вращения относительно С-С-группы и вращательные постоянные для вращения метильной –СН₂группы. Рассчитаны также торсионные частоты вокруг связи С-С и частоты вращения метильной группы: 115 (20) и 150 (20) см⁻¹. Эти значения находятся в хорошем согласии со значениями 116 и 125 см⁻¹, приведенными в работе [26]. Только в третьей работе [27] при исследовании микроволнового спектра на микроволновом спектрометре с Фурье-преобразованием авторам удалось обнаружить s-цис-изомер. Барьер внутреннего вращения метильной группы для s-mpanc- и s-цисизомеров, полученный в этой работе, составляет 433,8 и 376,8 см⁻¹ соответственно. Были обнаружены изотопные разновидности тяжелых атомов, что позволило авторам работы рассчитать длины связей и углы для обоих изомеров метилвинилкетона с помощью анализа Крайчмана и сравнить результаты с полученными квантово-механическим расчетом [27]. Самой информативной по значениям колебательных фундаментальных частот обоих изомеров исследуемой нами молекулы является работа [26]. Авторы получили ИКспектры в области 3500-50 см⁻¹ и КР-спектры в области 3200-10 см⁻¹ для газообразных, жидких и твердых образцов метилвинилкетона. В КРспектрах определены поляризованные и деполяризованные полосы поглощения. Проведено полное отнесение как *s-транс*, так и *s-цис*-изомеров молекулы метилвинилкетона [26]. Довольно полное отнесение обеих изомерных форм исследуемой нами молекулы проведено также в работе [28]. В работе [29] были получены в ИК-спектре изучаемой молекулы в аргоновой матрице полосы поглощения в области от 1690 до 616 см⁻¹ для *s-транс*-изомера, а в области от 1710 до 603 см⁻¹ для *s-цис*-изомера, проведено отнесение. В работе [30] изучали ИК-спектр в области 80-850 см⁻¹ и отнесли значение 101 см⁻¹ к частоте крутильного колебания вокруг одинарной связи С-С. Это же значение для частоты крутильного колебания вокруг одинарной связи С-С приводят

авторы работы [31]. В работе [32] в сочетании со спектроскопией миллиметрового диапазона проведены квантово-механические расчеты для характеристики основного и первого возбужденного колебательных состояний обоих стабильных изомеров метилвинилкетона, проведен расчет равновесных геометрий для обоих изомеров исследуемой молекулы. Объединив теоретические и экспериментальные данные, авторы [32] получили разность энергии между *s-mpaнc*-изомером и *s-цис*-изомером метилвинилкетона, равную $164 \pm 30 \text{ cm}^{-1}$ (198 ± 18 cm⁻¹ [23], 280 cm⁻¹ [26]). В работе [33] применение лазеров на свободных электронах позволило авторам провести разделение изомеров метилвинилкетона в молекулярном пучке при температуре 1,2 (2) К из-за электростатического отклонения. Это важно для синтеза соединений определенной конфигурации. Полученные конформеры хорошо подходят для исследования их химической реакционной способности в реакциях циклоприсоединения Дильса-Адлера.

Экспериментальная часть

Перед съемкой УФ-спектра поглощения образец метилвинилкетона («х.ч.») очищали от примесей путем обычной и холодной перегонки с замораживанием и вакуумной откачкой. УФспектры поглощения метилвинилкетона получены на приборе высокого разрешения «ДФС-2».

Снимали во втором порядке решетки 2400 штрихов/мм с обратной линейной дисперсией 8,3 А/мм. В качестве источника сплошного излучения применяли лампу «ДКСШ-1000». Использовали многоходовую (3 м) кварцевую кювету с рубашкой, по которой пропускали нагретое силиконовое масло. Давление паров изменялось от 50 до 400 мм рт. ст. Давление паров удавалось менять из-за конструкции кюветы: от внутренней части кюветы отходил сборник вещества в виде небольшой пробирки. После откачивания кюветы до высокого вакуума с помощью замораживания сборника жидким азотом в него собирали метилвинилкетон. Давление паров повышали при нагреве сборника метилвинилкетона силиконовым маслом. Время экспозиции меняли от нескольких минут до нескольких часов, так что в область нормального почернения попадали разные участки спектра. Регистрацию спектров проводили фотографически на пленку КН-2. В области 24900-29200 см⁻¹ была получена хорошо разрешенная колебательная структура УФ-спектра паров метилвинилкетона

с 68 полосами поглощения сильной, средней и малой интенсивности. Для измерения волновых чисел полос поглощения паров метилвинилкетона снимали спектр железа.

Обсуждение результатов

Колебательная структура УФ-спектров высокого разрешения исследуемых нами соединений состоит из большого числа полос поглощения (обычно, около сотни), почти каждая из которых соответствует определенному переходу между уровнями энергии крутильного колебания *s-mpaнc-* или *s-цис-*изомера из основного (S_0) электронного состояния в возбужденное (S_1). Кроме того, некоторые из полос поглощения колебательной структуры УФ-спектров соответствуют (0–0)-полосам (0_0^0 -переходам) обеих изомерных форм исследуемых соединений и фундаментальным колебательным частотам этих изомеров в электронных состояниях S_0 и S_1 .

Колебательная структура УФ-спектров высокого разрешения метилвинилкетона (CH₃-C(O) СН=СН₂), исследуемого нами в настоящей работе, состоит из 68 полос поглощения сильной, средней и малой интенсивности в области 24900–29200 см⁻¹. Как установлено в работах [26, 27], метилвинилкетон в газообразном состоянии представляет смесь *s-транс-и s-цис-изомеров* (рисунок). Полосы поглощения метилвинилкетона, судя по интенсивности обзорного спектра, принадлежат к *n*-*π**-переходу синглетного электронного перехода $S_0 \rightarrow S_1$ симметрии (¹A' - ¹A''), что согласуется с изучением кетонов в работе [34]. Анализ колебательной структуры исследуемой молекулы показал, что полосы поглощения для каждого изомера этого соединения по своему контуру являются полосами «перпендикулярного» (С-типа), «параллельного» или «гибридного» (А + В)-типа, как это наблюдалось для плоских в обоих электронных состояниях молекул произ-

водных акролеина [6, 8]. Выражение для волновых чисел всех возможных колебательных переходов данного электронного перехода (системы полос) приведено в [35]. Интенсивная полоса с волновым числом 26122,8 см⁻¹ колебательной структуры УФ-спектра высокого разрешения метилвинилкетона в газовой фазе отнесена к 00-переходу *s-транс*-изомера этого соединения. От (0-0)-полосы *s-транс*-изомера исследуемого соединения в сторону уменьшения волновых чисел находятся полосы, отстоящие на величины Δω, которые близки к значениям фундаментальных частот этого изомера в состоянии S₀ (табл. 1). Отнесение 0_0^0 -перехода *s-транс*-изомера метилвинилкетона подтверждается фундаментальными частотами в основном электронном состоянии (S₀): частотой крутильного колебания относительно С-С-связи, равной 115.7 см⁻¹, торсионной частотой метильной группы СН₃ со значением 125 см⁻¹, v'' = 291 см⁻¹, v'' = 491 см⁻¹ (табл. 1, 2). Эти значения фундаментальных частот s-mpancизомера, полученные нами при анализе колебательной структуры УФ-спектра высокого разрешения паров метилвинилкетона в основном электронном состоянии (S₀) совпадают со значениями фундаментальных частот в этом электронном состоянии, полученными из ИК-Фурье-спектров [26] (табл. 1). 00-переход s-транс-изомера изучаемого соединения также подтверждается найденными нами фундаментальными частотами возбужденного электронного состояния (S_1) : v' = 383 см⁻¹, v' = 605 см⁻¹, v' = 1192 см⁻¹, v' = 1306 см⁻¹, v' = 1342 см⁻¹, v' = 1461 см⁻¹, v' = 2757 см⁻¹, v' = 2826 см⁻¹ (табл. 1, 2). От (0-0)-полосы *s-транс*-изомера исследуемого соединения в сторону увеличения волновых чисел находятся полосы, отстоящие на величины $\Delta \omega_i$, которые близки к значениям фундаментальных частот этого изомера в состоянии S₁ (табл. 1). Перечисленные выше частоты воз-

Равновесная смесь s-mpanc- и s-цис-изомеров в молекуле метилвинилкетона

ебательной структуры		возбужденное состояние (S ₁)	'nuc	175	I	I	I	I	I	I	1430	1324	1182	I	I
	ектр		транс	230	I	I	383	605	I	1306	1461	1342	1192	2876	2757
ри анализе ко	УФ-с	стояние (S ₀)	'nnc	87	121	I	421	I	662	I	Ι	Ι	I	Ι	I
айденные пј		основное со	транс	116	125	291	493	I	I	I	I	Ι	I	I	I
бательные частоты <i>транс-</i> и <i>цис-</i> изомеров метилвинилкетона в газовой фазе, най УФ-спектра (см ⁻¹)	ra3 [28]		nhc	101		300	416	I	I	I	I	1624	1730	I	I
	ИК-спектр		транс	101	I	I	Ι	538	I	1248	1365	1624	1712	I	I
	КР-спектр газ [26] <i>транс</i>		транс	I	I	291	Ι	I	I	1257	I	I	I	Ι	I
		a3 [26] uuc		87	121	I	422	606	662	Ι	I	Ι	1729	Ι	2955
	ИК-спектр і		транс	116	125	292	492	530	691	1249	1366	1620	1705	2936	2971
	Отнесение [26]			COCH _{3 torsion}	CH _{3 torsion}	OCC _{deformat.}	${\cal V}_{17}$ Skeletal deform	H_2CCC_{deform}	CH _{bend}	CCC antis. strtetch	CH _{3 sym.} deformat	C=C _{stretch}	C=O _{stretch}	CH _{3 sim. stretch}	CH _{3 antisim stret}
аментальные колеб	Симметрия [26]			a″	a″	a″	a″	a″	a″	a'	a″	a'	a'	a'	a,
Фунд		Š		1	5	3	4	5	6	7	8	6	10	11	12

Вестн. Моск. ун-та. Сер. 2. Химия. 2022. Т. 63. № 6 Vestn. Mosk. un-ta. Ser. 2. Chemistry. 2022. Т. 63. № 6

Таблица 1

Таблица 2

Волновые числа полос поглощения УФ-спектра метилвинилкетона в газовой фазе (см⁻¹)

No	ω _i	Отнесение	N⁰	ω	Отнесение изомеров		
		s-транс	s-цис			s-транс	s-цис
1	24928,8	_	$6^0_1 1^0_2$	35	26842,6	$5_0^1 1_1^1$	_
2	25013,3	_	$6^0_1 1^0_1$	36	26857,7	_	$10_0^1 1_1^0$
3	25099,8	_	6 ⁰ ₁	37	26915,2	_	$9_0^1 1_2^0$
4	25169,4	_	$4_1^0 1_2^0$	38	26944,4	_	10_{0}^{1}
5	25253,8	_	$4^0_1 1^0_1$	39	26965,1	_	$9_0^1 2_1^0$
6	25274,5	_	$6_0^1 1_0^1$	40	26999,8	_	$9_0^1 1_1^0$
7	25341,0	_	4 ⁰ ₁	41	27021,5	_	$8_0^1 1_2^0$
8	25513,8	$4_1^0 1_1^0$	_	42	27032,4	_	$10_0^1 1_1^1$
9	25591,3	_	120	43	27071,6	_	8 ¹ ₀ 2 ⁰ ₁
10	25629,6	410	_	44	27086,4	_	9_0^1
11	25641,2	_	2_{1}^{0}	45	27105,6	_	$8_0^1 1_1^0$
12	25675,5	_	1^{0}_{1}	46	27118,5	_	$10_0^1 1_0^1$
13	25715,3	$3^{0}_{1}1^{0}_{1}$	_	47	27192,7	_	8_0^1
14	25744,1	$4_1^0 1_1^1$	_	48	27198,2	$10_0^1 1_1^0$	_
15	25762,3	_	000	49	27202,3	$7_0^1 1_2^0$	_
16	25831,4	310	_	50	27238,7	$9_0^1 1_2^0$	_
17	25850,3	_	1_{1}^{1}	51	27261,6	_	$9_0^1 1_0^1$
18	25859,9	$4_1^0 1_0^1$	_	52	27314,4	10_{0}^{1}	_
19	25937,5	_	1_{0}^{1}	53	27349,0	$9_0^1 1_1^0$	_
20	25956,4	3 ⁰ ₁ 2 ⁰ ₁	_	54	27366,8	_	$8_0^1 1_0^1$
21	25997,8	2^{0}_{1}	_	55	27429,2,	$7_0^1, 10_0^1 1_1^1$	_
22	26007,1	1^{0}_{1}	_	56	27457,0	$8_0^1 2_1^0$	_
23	26061,6	$4^0_1 1^1_0$	-	57	27465,1	9_0^1	-
24	26122,8	000	_	58	27469,1	$8_0^1 1_1^0$	-
25	26237,1	1_{1}^{1}	-	59	27544,2	$10_0^1 1_0^1$	-

бужденного электронного состояния (S_1) равны найденным $\Delta \omega_i$ в сторону увеличения волновых чисел. Критерием отнесения полос поглощения колебательной структуры УФ-спектра паров исследуемых соединений к фундаментальным частотам возбужденного (S_1) электронного состояния является наличие от этих полос поглощения частоты крутильного колебания относительно связи С-С или (0-v)-переходов этого колебания соответствующего изомера в основном электронном состоянии (S₀) (табл. 3.) Значение волнового числа 26122,8 см⁻¹ полосы поглощения колебательной структуры УФ-спектра, полученного в настоящей работе и отнесённое нами к 0₀⁰-переходу *s-транс*-изомера, совпадает со значением 0₀-перехода *s-транс*-изомера метилвинилкетона работы [34]. В работе [34], как указывают авторы, анализировался УФ-спектр паров исследуемого соединения слабой интенсивности. В работе [34] не определена частота крутильного колебания относительно С-С-связи *s-транс*-изомера исследуемой молекулы. Ее среднее значение, полученное в нашей работе, равно $115,9 \pm 0,5$ см⁻¹ (табл. 1, 3). Значения частот крутильного колебания относительно С-С-связи для обеих изомерных форм метилвинилкетона в обоих электронных состояниях находили по программе NONIUS. Различаются также торсионные частоты метильной группы:

в нашей работе значение этой частоты составля-

ет 125 см⁻¹ и совпадает с полученным в результате анализа ИК-Фурье-спектра [26] (табл. 1), в то время, как в [34] приведено значение 111 см⁻¹. Следует отметить, что при анализе колебательной структуры УФ-спектра высокого разрешения и УФ-спектра, полученного в работе [34], совпадает пять частот возбужденного электронного состояния: v' = 383 см⁻¹, v' = 605см⁻¹, v' = 1192 см⁻¹, v' = 1306 см⁻¹, v' = 1461 см⁻¹ (табл. 1). Отнесение некоторых частот мы взяли иным, чем в работе [34] (табл. 1).

Главным отличием колебательной структуры УФ-спектра высокого разрешения, полученного в нашей работе, от колебательной структуры УФ-спектра, приведенного в [34], является присутствие значительного числа полос поглощения второго *s-цис*-изомера. В работе [34] *s-цис*-изомер полностью отсутствует. Наличие в колебательной структуре УФ-спектра полос поглощения менее устойчивого цис-изомера позволило нам сделать их отнесение. Интенсивная полоса с волновым числом 25762,3 см⁻¹ колебательной структуры УФ-спектра высокого разрешения метилвинилкетона в газовой фазе отнесена к 0₀⁰-переходу s-цис-изомера этого соединения. Аналогично s-транс-изомеру, от (0-0)-полосы s-цис-изомера исследуемого соединения в сторону уменьшения волновых чисел находятся полосы, отстоящие на величины $\Delta \omega_i$, которые близки к значениям фун-

Вестн	. Моск	:. ун-т	a. Cep.	2. Химия.	2022.	T. 63.	<u>№</u> 6	
Vestn.	Mosk.	un-ta.	Ser. 2.	Chemistry.	2022.	T. 63.	<u>№</u> 6	

λ6-		Отнесение	изомеров	No		Отнесение изомеров		
JN⊡	ω	s-транс	s-цис	JN⊡	ω_i	s-транс	s-цис	
26	26352,6	1^{1}_{0}	_	60	27584,2	8^{1}_{0}	_	
27	26389,6	$4_0^1 1_1^0$	_	61	27632,0	$12_0^1 2_0^2$	_	
28	26505,3	4_0^1	_	62	27659,2	$7_0^1 1_1^0$	_	
29	26611,8	$5_0^1 1_1^0$	_	63	27696,1	$9_0^1 1_0^1$	_	
30	26619,2	$4_0^1 1_1^1$	_	64	27814,2	$8_0^1 1_0^1$	_	
31	26728,2	5^{1}_{0}	_	65	28764,2	$12_0^1 1_1^0$	_	
32	26735,3	$4_0^1 1_0^1$	_	66	28880,3	12_{0}^{1}	_	
33	26773,6	_	$10_0^1 1_2^0$	67	28998,5	11_{0}^{1}	_	
34	26823,6	_	$10_0^1 2_1^0$	68	29229,1	$11_0^11_0^1$	-	

Таблица З

Частоты переходов крутильного ко	лебания <i>s-транс</i> -изомера метилвин	илкетона в основном (S_0)	электронном
	состоянии, полученные из УФ-спек	тра	-

(0-v)- переходы	ν ₀₀	v'' = 291	v'' = 493	v' = 383	v' = 605	v' = 1192	v' = 1342	v' = 1461	v' = 2757	Средние значения
0-1	115,7	116,1	115,8	115,7	116,4	116,2	116,1	115,1	116,1	115,9±0,5
0-2	_	_	_	_	_	_	226,3	_	_	226±1,0

Таблица 4

Частоты переходов крутильного колебания для *s-цис*-изомера метилвинилкетона в основном (S₀) электронном состоянии, полученные УФ-спектра и из ИК-Фурье-спектра

	ИК-Фурье-спектр [26]								
(0–v)- переходы		ν",	cm^{-1}		ν' , cm^{-1}		средние	значения	значения
	V ₀₀	421	662	1182	1324	1430	значения	(v+1)-v	переходов
0-1	86,8	87,2	86,5	86,7	86,6	87,1	86,8±0,4	87,0	87,0
0-2	171,0	171,6	171,0	-	171,2	171,2	171,2±0,4	84,0	171,0

даментальных частот s-цис-изомера в состоянии S_0 (табл. 1). Отнесение 0_0^0 -перехода *s-цис*-изомера метилвинилкетона подтверждается фундаментальными частотами в основном электронном состоянии (S₀): частотой крутильного колебания относительно С-С-связи, равной 86,8 см⁻¹, торсионной частотой метильной группы СН₃ со значением 121 см⁻¹, v'' = 421 см⁻¹, v'' = 662 см⁻¹ (табл. 1, 2). Эти значения фундаментальных частот s-цис-изомера, полученные нами при анализе колебательной структуры УФ-спектра высокого разрешения паров метилвинилкетона в основном электронном состоянии (S₀) совпадают со значениями фундаментальных частот этого изомера в этом электронном состоянии, полученными из ИК-Фурье-спектров [26] (табл. 1). 0⁰ -переход s-иис-изомера изучаемого соединения также подтверждается найденными нами фундаментальными частотами возбужденного электронного состояния (S_1) : v' = 1181см⁻¹, v' = 1324см⁻¹, v' = 1430 см⁻¹ (табл. 1, 2). Эти значения фундаментальных частот *s-цис*-изомера метилвинилкетона в возбужденном электронном (S_1) состоянии равны величинам $\Delta \omega_i$, расположенным в сторону увеличения волновых чисел от волнового числа (0-0)-полосы $(0_0^0$ -перехода). От фундаментальных частот в состоянии S₁ для s-цис-изомера изучаемого соединения в сторону уменьшения волновых

чисел находится такая же по значению частота крутильного колебания вокруг С-С-связи этого изомера в основном электронном состоянии, как от 0_0^0 -перехода и фундаментальных частот основного электронного состояния (S₀) этого изомера (табл. 4). Значение волнового числа 25762,3 см⁻¹ полосы поглощения колебательной структуры УФ-спектра, полученного в настоящей работе и отнесенное нами к 0_0^0 -переходу *s-цис*-изомера, совпадает со значением 0_0^0 -перехода *s*-*цис*-изомера метилвинилкетона, приведенном в работе [36]. В табл. 4 приведены значения (0-2)-переходов *s-цис*-изомера метилвинилкетона в состоянии S₀, определенные в нашей работе от 0_0^0 -перехода и всех фундаментальных частот этой молекулы как в основном (S_0), так и в возбужденном (S_1) электронных состояниях.

В настоящей работе найдена частота крутильного колебания вокруг С–С-связи в возбужденном электронном состоянии для *s-mpaнc*изомера от v_{00} , v'' = 493 см⁻¹, v' = 1192 см⁻¹, v' = 1342 см⁻¹, v' = 2876 см⁻¹. Среднее значение этой частоты равно $230,5 \pm 0,7$ см⁻¹. Полученное в работе значение частоты совпало со значением аналогичной частоты, приведенным в [34]. Для *цис*-изомера от v_{00} , v'' = 662 см⁻¹, v'' = 1182 см⁻¹, v'' = 1324 см⁻¹, v'' = 1430 см⁻¹ также найдена частота крутильного колебания вокруг С–С-связи в возбужденном электронном состоянии. Среднее значение этой частоты для *s-цис*-изомера равно 174,7 \pm 0,6 см⁻¹. Поскольку все частоты в колебательной структуре УФ-спектра находятся как разностные величины, очень важно полосы одного типа измерять единообразно. Все полосы С-типа измеряли по максимуму поглощения, полосы (A + B)-типа – по провалу на контуре полосы. Так измеряли все полосы, волновые числа которых приведены в табл. 2. В этой таблице дано полное отнесение всех полученных в экперименте 68 полос поглощения колебательной структуры УФ-спектра высокого разрешения молекулы метилвинилкетона.

Выводы

Анализ колебательной структуры УФ-спектра высокого разрешения метилвинилкетона показал, что его колебательная структура отличается от аналогичной производных альдегидов [6, 8, 9]. Применение программы NONIUS для производных альдегида позволило находить прогрессии и секвенции по частотам крутильного колебания основного (S_0) и возбужденного (S_1) электронных состояний, которые являлись строками и столбцами многочисленных таблиц Деландра. Из этих таблиц находили частоты крутильного колебания, (0-v)-переходы этого колебания до высоких значений колебательного квантового числа v, которые повторялись многократно в разных таблицах Деландра. Применение программы NONIUS в настоящей работе позволило найти частоты крутильного колебания вокруг С-С-связи обеих изомерных форм исследуемой молекулы в обоих электронных состояниях. Значение частоты s-транс-изомера метилвинилкетона в основном (S₀) электронном состоянии подтверждено совпадением со значением частоты этого изомера, полученной из ИК-Фурье-спектров [26]. Значение

СПИСОК ЛИТЕРАТУРЫ

- Hollas J.M., Gregorek E., Goodman L. // J. Chem. Phys. 1968. Vol. 49. № 4. P. 1745.
- Glebova L.A., Abramenkov A.V., Margolin L.N., Zenkin A.A., Pentin Y.A., Tyulin V.I. // J. Struct. Chem. 1979. Vol. 20. N 6. P. 884.
- Durig J.R, Church J.S., Compton D.A.C. // J. Chem. Phys. 1979. Vol. 71. N 3. P. 1175.
- 4. Balfour W. // J. Mol. Spectr. 1980. Vol. 84. N 1. P. 60.
- 5. Durig J.R., Li Y., Jin Y. // Mol. Phys. 1997. Vol. 91. P. 421.
- Koroleva L.A., Tyulin V.I., Matveev V.K., Pentin Yu.A.
 // Spectrochimica Acta A.: Mol. and Biomol. Spectros. 2014. Vol. 22. P. 609.

частоты крутильного колебания s-mpahc-изомера в возбужденном электронном (S₁) состоянии совпало с ее значением, приведенном в работе [34]. Все полосы колебательной структуры УФспектра *s-цис*-изомера метилвинилкетона в нашей работе получены впервые. Это позволило высокое разрешение прибора. Значения частоты и (0-2)-перехода крутильного колебания вокруг связи С-С *s-цис*-изомера исследуемой молекулы в основном (S₀) состоянии подтверждены совпадением с их значениями, полученными из ИК-Фурье-спектров [26]. Однако при анализе колебательной структуры УФ-спектра нами не были найдены (0-v)-переходы крутильного колебания до высоких значений колебательного квантового числа v. Вероятно, это можно связать со стерическими затруднениями при вращении группы СН₃-С(О) в молекуле метилвинилкетона (СН₃-С(О)СН=СН₂) относительно С-С-связи. Кроме того, в состоянии S₀ частоты крутильного колебания вокруг связи С-С и торсионные частоты метильной группы в молекуле метилвинилкетона близки между собой как для s-mpahc, так и для s-цис изомеров (табл. 1). Это, вероятно, может изменить колебательную структуру по сравнению с альдегидами. В результате анализа колебательной структуры УФ-спектра высокого разрешения метилвинилкетона были определены значения полос, отнесенных к 00-переходам обоих изомеров. Эти значения подтверждены фундаментальными частотами *s-транс* и *s-цис* изомеров в основном (S_0) электронном состоянии работы [26]. Значение 00-перехода *s-транс*-изомера совпало со значением этого перехода, приведенном в работе [34]. Значение 0_0^0 -перехода *s*-*цис*-изомера совпало со значением этого перехода, приведенном в работе [36].

От 0_0^0 -переходов обоих изомеров найдены фундаментальные частоты *s-mpaнc- s-цис* изомеров в возбужденном (S_1) электронном состоянии.

- Koroleva L.A, Abramenkov A.V., Krasnoshchekov S.V., Korolyova A.V., Bochenkova A.V // J. Mol. Struct. 2019 Vol. 1181. P. 228.
- Королева Л.А., Матеев В.К., Королева А.В., Пентин Ю.А. // ЖФХ. 2018. Т. 92. № 3. С. 415.
- Королева Л.А., Андриасов К.С., Королева А.В. // Вестн. Моск. ун-та. Сер. 2. Химия. 2021. Т. 62. № 6. С. 481.
- Biesenthal T.A., Shepson P.B. // Geophys. Res. Lett. 1997. Vol. 24. P. 1375.
- Zhang D., Lei W., Zhang R. // Chem. Phys. Lett. 2002. Vol. 358. P. 171.

Вестн. Моск. ун-та. Сер. 2. Химия. 2022. Т. 63. № 6 Vestn. Mosk. un-ta. Ser. 2. Chemistry. 2022. Т. 63. № 6

- Brilli F., Gioli B., Ciccioli P., Zona D., Loreto F., Janssens I.A., Ceulemans R. // Atmos. Environ. 2014. Vol. 97. P. 54.
- 13. Gutbrod R., Kraka E., Schindler R.N., Cremer D. // J. Am. Chem. Soc. 1997. Vol. 119. P. 7330.
- Tuazon E.C., Atkinson R. // Int. J. Chem. Kinet. 1989.
 Vol. 21. P. 1141.
- Galloway M.M., Huisman A.J., Yee L.D., Chan A.W.H., Loza C.L., Seinfeld J.H., Keutsch F.N. // Atmos. Chem. Phys. 2011. Vol. 11. P. 10779.
- Pierotti D, Wofsy S.C., Jacob D., Rasmussen R.A.J. // J. Geophys. Res. Atmos. 1990. Vol. 95. P. 1871.
- 17. Karl M., Dorn H.-P., Holland F., Koppmann R., Poppe D., Rupp L., Schaub A., Wahner A. // J . Atmos. Chem. 2006. Vol. 55. P. 167.
- Praske E., Crounse J.D., Bates K.H., Kurtén T., Kjaergaard H.G., Wennberg P.O. // J. Phys. Chem. A. 2015. Vol. 119. P. 4562.
- Atkinson R., Baulch D.L., Cox R.A., Crowley J.N., Hampson R.F., Hynes R.G., Jenkin M.E., Rossi M.J., Troe J., Subcommittee I. // J. Atmos. Chem. Phys. 2006. Vol. 6. P. 3625.
- Matsunaga S.N., Wiedinmyer C., Guenther A.B., Orlando J.J., Karl T., Toohey D.W., Greenberg J.P., Kajii Y. // Atmos. Chem. Phys. Discuss. 2005. Vol. 5. P. 11143.
- 21. Fu Y., Liao H. // Atmos. Environ. 2012. Vol. 59. P. 170.

- 22. Noack K., Jones R.N. // Can. J. Chem. 1961. Vol. 39. P. 2225.
- Bowles A.J., George W.O. // J. Chem. Soc. (B). 1969.
 P. 810.
- 24. Foster P.D., Rao V.M., R.F. Curl M.F. // J. Chem. Phys. 1965. Vol. 43. N 3. P. 1064.
- 25. Fantoni A.C., Caminati W., Meyer R. // Chem. Phys. Lett. 1987. Vol.133. N 1. P. 27.
- 26. Durig J.R., Little T.S. // Chern. Phys. 1981. 15 Oct. 1981. Vol. 75. N 8. P. 3660.
- 27. Wilcox D.S., Shirar A.J., Williams O.L., Dian B.C. // Chem. Phys. Lett. 2011. Vol. 508. P. 10.
- Oelichmann H.-J., Eougeard D., Schrader B. // J. Mol. Struct. 1981. Vol.77. P. 179.
- 29. Krantz A. // J. Amer. Chem. Soc. 1972. Vol. 94. P. 4022.
- Harris R. K., Witkowski R.E. // Spectrochim. Acta. 1964. Vol. 20. P. 1651.
- 31. Fateley W.G., Harris R.K, Miller F.A., Witkowski R.E // Spectrochim. Acta. 1965. Vol. 21. P. 231.
- Zakharenko O., Motiyenko R.A., Moreno J.R.A., Huet T.R. // J. Phys. Chem. A., 2017. Vol. 121. N 3. P. 6420.
- Wang J., Kilaj A., He L., Dlugolecki K., Willitsch S., Küpper J. // J. Phys. Chem. A., 2020. Vol. 124. P. 8341.
- Birge R.R., Pringle W.C., Leermakers P.A. // J. Amer. Chem. Soc. 1971. Vol. 93. N 25. P. 6715.
- Герцберг Г. Электронные спектры и строение многоатомных молекул. М., 1969. С. 149.
- 36. Марголин Л.Н. Дис. ... канд. хим. наук. М., 1975.

Информация об авторах

Королева Лидия Александровна – ст. науч. сотр. лаборатории молекулярной спектроскопии кафедры физической химии химического факультета Московского государственного университета имени М.В. Ломоносова, канд. хим. наук, koroleva. msu@rambler.ru;

Королева Александра Валерьевна – ст. науч. сотр. кафедры общей физики и молекулярной электроники физического факультета Московского государственного университета имени М.В. Ломоносова, канд. физ.-матем. наук, koroleva.phys@ mail.ru.

Вклад авторов

Все авторы сделали эквивалентный вклад в подготовку публикации.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Статья поступила в редакцию 16.04.2022; одобрена после рецензирования 12.05.2022; принята к публикации 14. 05.2022.