УДК 543.427.4

ОПРЕДЕЛЕНИЕ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В МИНЕРАЛЬНОЙ ВОДЕ МЕТОДОМ РЕНТГЕНОФЛУОРЕСЦЕНТНОГО АНАЛИЗА С ПОЛНЫМ ВНЕШНИМ ОТРАЖЕНИЕМ

К.В. Осколок*, О.В. Моногарова, Н.В. Алов

(кафедра аналитической химии; e-mail: *oskolok@analyt.chem.msu.ru)

Предложен способ определения лантана, церия, празеодима, неодима и самария в минеральной воде методом рентгенофлуоресцентного анализа с полным внешним отражением. В работе использована комбинированная процедура предварительного концентрирования ионов редкоземельных элементов, включающая соосаждение в виде гидроксидов на коллекторе (гидроксиде железа(III)) и дисперсионную жид-костно-жидкостную микроэкстракцию в виде комплексов с 1-(2-пиридилазо)-2-нафтолом хлороформом в присутствии этанола. С помощью разработанного гибридного подхода возможно одновременное определение ионов указанных металлов в минеральной воде в диапазоне $n \cdot (10^{-2} - 10^1)$ мкг/л. Результаты анализа природных вод «Архыз» и «Рычал-Су» предложенным в работе экстракционно-рентгенофлуоресцентным способом подтверждены литературными данными, полученными методом масс-спектрометрии с индуктивно-связанной плазмой.

Ключевые слова: рентгенофлуоресцентный анализ с полным внешним отражением, дисперсионная жидкостно-жидкостная микроэкстракция, редкоземельные элементы, минеральные воды.

Редкоземельные элементы (РЗЭ) служат индикаторами окислительно-восстановительных геохимических процессов, протекающих при формировании горных пород [1]. В результате выщелачивания микроэлементный состав горных пород влияет на содержание РЗЭ в минеральных водах [1, 2]. Поэтому определение РЗЭ в природных минеральных водах может быть востребовано при идентификации их географического происхождения. Вследствие крайне низкого содержания РЗЭ (10⁻¹-10² нг/л) для решения указанной задачи используют один из наиболее чувствительных методов элементного анализа – масс-спектрометрию с индуктивно связанной плазмой (ИСП МС) [3]. Однако высокий солевой фон и сильные матричные эффекты обусловливают необходимость длительной и трудоемкой пробоподготовки. В работе [4] предложен простой и эффективный способ извлечения РЗЭ из воды и отделения от мешающих компонентов, основанный на технике дисперсионной жидкостно-жидкостной микроэкстракции (ДЖЖМЭ).

ИСП МС – достаточно сложный и дорогостоящий метод анализа. В качестве более доступной альтернативы можно предложить рентгенофлуоресцентный анализ с полным внешним отражением (РФА ПВО). Достоинствами метода РФА ПВО являются предельно малое количество анализируемой пробы, простота пробоподготовки и процедуры количественного анализа [5]. В отличие от ИСП МС для выполнения измерений не нужен высокочистый аргон. Однако по чувствительности метод РФА ПВО уступает ИСП МС, а недостаточно высокое спектральное разрешение ограничивает возможности одновременного определения элементов с близкими атомными номерами.

Цель настоящего исследования – разработка способа одновременного определения лантана, церия, празеодима, неодима и самария в минеральной воде методом РФА ПВО с предварительным концентрированием ионов указанных РЗЭ в виде комплексных соединений с помощью ДЖЖМЭ.

Экспериментальная часть

Реагенты и материалы. В работе использованы растворы нитратов лантана, церия, празеодима, неодима и самария (концентрация 1 мг/мл), полученные растворением в 5%-й азотной кислоте навесок оксидов соответствующих металлов «х.ч.», взятых с точностью до 0,1 мг (использованы аналитические весы). Градуировочные растворы получены последовательным разбавлением указанных растворов РЗЭ деионизованной водой (15–18 МОм). Для подготовки образцов и холостых проб использовали концентрированную азотную кислоту «ос.ч.», 25%-й раствор аммиака «х.ч.» и нитрат железа(III) девятиводный «ос.ч.».

Концентрирование ионов металлов. Анализируемую пробу минеральной воды объемом 500 мл подкисляли азотной кислотой до установления рН 1, добавляли 1 мл 5 %-го раствора нитрата железа(III) и нагревали почти до кипения. Далее при интенсивном перемешивании добавляли раствор аммиака (1:1) по каплям до появления запаха. После отстаивания выделившегося гидроксида железа(III) маточный раствор № 1 декантировали через фильтр «красная лента» и отбрасывали. Влажный осадок растворяли, добавляя по каплям концентрированную азотную кислоту. Полученный раствор нагревали почти до кипения и при перемешивании добавляли раствор аммиака (1:1) до рН 3,0-3,5. После отстаивания вторично выделившегося осадка гидроксида железа(III) маточный раствор № 2 декантировали через фильтр «красная лента» в чистый стеклянный стаканчик. Осадок на фильтре промывали горячим 1%-м раствором нитрата аммония. Маточный раствор № 2 с промывными водами упаривали до объема ~15-20 мл и затем добавляли по каплям 25%-й раствор аммиака до установления рН 8,5-9,0.

Полученный раствор помещали в пластиковый флакон из полипропилена с коническим дном объемом 50 мл, добавляли 3 мл аммиачного буферного раствора и с помощью шприца вводили экстрагирующую смесь – 8,2 мл этанола (диспергент), 525 мкл 10 мМ раствора пиридилазонафтола в смеси этанола и ацетона (4:1) (комплексант) и 510 мкл хлороформа (извлекающая фаза). Полученную эмульсию центрифугировали в течение 10 мин (Eppendorf 5702, 4400 об/мин). Конечный объем выхода органической фазы ~220 мкл. Условия экстракционного извлечения РЗЭ оптимизированы в работе [4]. Органическую фазу отбирали микрошприцем Hamilton (100 мкл), переносили порциями по 50 мкл в микровставку емкостью 200 мкл для стеклянной виалы ND9 (ЗАО «Аквилон», Россия) и аккуратно упаривали на водяной бане, нагретой до 50 °C. Каждую следующую порцию органической фазы добавляли в микровставку только после полного испарения растворителя предыдущей порции. Сухой остаток растворяли в 100 мкл 3%-й азотной кислоты, содержащей внутренний стандарт (Ga, 2 мкг/л). Полученный концентрат (50 мкл) наносили с помощью механической пипетки-дозатора (5 капель по 10 мкл) на гидрофобизированную раствором силикона поверхность кварцевого отражателя.

Измерение аналитического сигнала проводили на спектрометре «РФА ПВО S2 PICOFOX» («Вгикег Nano GmbH», Германия). Для возбуждения рентгеновской флуоресценции использовали излучение Мо K_a (17,5 кэВ). Рабочее напряжение рентгеновской трубки 50 кВ, сила тока 600 мкА. Прибор укомплектован высокоэффективным модулем для увеличения чувствительности определения и кремниевым дрейфовым детектором «XFlash[®]» с термоэлектрическим охлаждением. Энергетическое разрешение по линии Mn K_a (5,90 кэВ) менее 150 эВ. Время накопления спектра 1000 с.

РФ-определение РЗЭ выполняли способом внутреннего стандарта. В качестве аналитических были выбраны L_{α} -линии La (4,65 кэВ), Ce (4,84 кэВ), Pr (5,03 кэВ), Nd (5,23 кэВ) и Sm (5,63 кэВ), в качестве линии сравнения – Ga K_{α} (9,25 кэВ).

Результаты и их обсуждение

При нанесении индивидуальных водных растворов нитратов РЗЭ на кварцевую подложкуотражатель пределы обнаружения, как установлено в настоящей работе, составляют (пг): 52 (La), 33 (Ce), 31 (Pr), 29 (Nd) и 24 (Sm). Таким образом, чувствительность прямого определения РЗЭ даже в модельных системах недостаточно велика, что обусловлено сравнительно низкими значениями массовых коэффициентов поглощения характеристического излучения Мо K_{α} (46–58 см²/г) и выходов флуоресценции (0,11-0,18) [6]. Кроме того, возможность проведения и правильность результатов РФА ПВО довольно сильно зависят от уровня минерализации воды [7]. Поэтому, например, упаривание (простейший и наиболее доступный вариант группового концентрирования) в общем случае не дает желаемого результата. По этой же причине аналитический эффект от многократного нанесения раствора на поверхность отражателя весьма ограничен. В работе [7] показано, что нанесение на подложку жидкой пробы объемом более 50-60 мкл уже не приводит к росту чувствительности, но сопровождается значимым увеличением погрешности определения.

При разработке гибридных методик анализа среди всех методов разделения и концентрирования экстракция наилучшим образом сочетает-

ся с методом РФА ПВО, поскольку концентрат изначально находится в жидкой и, как правило, легкокипящей фазе. Предварительную экстракцию успешно используют как для концентрирования определяемых микропримесей [8], так и для извлечения и сброса мешающих матричных компонентов [9]. Особый интерес представляет современный вариант этого метода – ДЖЖМЭ, к преимуществам которого следует отнести малый объем органического растворителя (а значит, потенциально более высокие коэффициенты концентрирования и меньший вред для здоровья аналитика и окружающей среды) и высокую скорость достижения экстракционного равновесия (и, следовательно, большую экспрессность выполнения) [10]. Сочетание методов РФА ПВО и ДЖЖМЭ весьма эффективно при определении ультрамалого содержания элементов как в жидких [11, 12], так и твердофазных объектах [13]. Предложенная в работе [4] методика (ДЖЖМЭ) извлечения из воды ионов РЗЭ в виде комплексных соединений с пиридилазонафтолом позволяет почти количественно отделять ионы Li, Na, Mg, K, Ca, Fe, Rb, Sr, Cs и Ва. Но с учетом сравнительно большого расхода жидкой пробы при измерении аналитического сигнала методом ИСП МС (несколько миллилитров) на заключительном этапе извлечения полученный экстракт авторам статьи приходилось разбавлять в десятки раз. В результате коэффициенты концентрирования оказались очень низкими (в зависимости от степени извлечения от 2,2 до 7,7 для разных РЗЭ).

Особенностью метода РФА ПВО является предельно малое количество анализируемой жидкой пробы (единицы – десятки микролитров) [5], что исключает необходимость разбавления экстракта, позволяет увеличить коэффициенты концентрирования аналита до 10^2 и достичь сопоставимых пределов обнаружения при изначально меньшей чувствительности метода. Замена растворителя перед нанесением концентрата на кварцевую подложку и ее гидрофобизация необходимы для исключения растекания капель по поверхности отражателя и возможности помещения достаточно большого количества аналита под рентгеновский зонд (50 мкл раствора).

В настоящей работе, принимая во внимание крайне низкое содержание РЗЭ в природной минеральной воде, мы ввели дополнительную стадию концентрирования, предваряющую ДЖЖМЭ. Эта стадия включает в себя соосаждение гидроксидов РЗЭ на гидроксиде железа(III) и последующий сброс коллектора. Указанная процедура основана на различии значений рН осаждения гидроксида железа(III) (2–3) и соосаждения аналитов (5–6) [14]. Предварительное концентрирование РЗЭ на коллекторе позволяет повысить чувствительность определения РФ ПВО более чем на порядок.

Главным достоинством гибридных методик, сочетающих стадию предварительного концентрирования определяемых компонентов с последующим измерением аналитического сигнала методом РФА ПВО, является возможность проведения высокочувствительного одновременного многоэлементного анализа. Однако РФ-спектрометры с энергетической дисперсией характеризуются достаточно низким спектральным разрешением. В результате некоторые аналитические линии РЗЭ (например, LaL_{B1} (5,04 кэВ) и PrL_{a12} (5,03 кэВ) или CeL_{b1} (5,26 кэВ) и NdL_{a12} (5,23 кэВ)) сильно накладываются друг на друга, что приводит к уменьшению селективности, а также снижает правильность определения (рисунок).

Корректный учет наложения спектральных линий возможен лишь при наличии достоверной информации об их профиле, положении относительной интенсивности. Отношение И интенсивности линий того или иного элемента зависит от заселенности электронных уровней, вероятности соответствующих квантовых переходов и матричного состава пробы. В классическом РФА отношение интенсивностей линий одной серии соответствующего элемента для разных образцов может меняться очень сильно. В методе РФА ПВО зависимость интенсивности линий *L*-серии определяемых РЗЭ от массы соответствующего элемента на подложке-отражателе сохраняет линейность, по крайней мере, в интервале трех порядков. При этом отношение значений интенсивности отдельных линий меняется незначимо (табл. 1), что обусловлено практически полным отсутствием матричных эффектов в направлении отбора аналитической информации при толщине слоя пробы, не превышающей нескольких десятков микрометров. В этом случае спектр многокомпонентной пробы можно рассматривать как линейную комбинацию спектров отдельных элементов. Такое допущение работает даже при очень сильном наложении спектральных линий (табл. 2).

В настоящей работе использована следующая процедура определения сопоставимых

РФ ПВО-спектр концентрата, полученного при извлечении ионов La, Ce, Pr, Nd и Sm из водного раствора с концентрацией всех РЗЭ 70 нг/л

Таблица 1

Элемент	Параметр	Масса элемента на отражателе, нг			
		1	10	100	1000
La	$[I(L_{\alpha 1,2})/I(L_{\beta 1})]_{cpeg.}$	1,305	1,321	1,316	1,295
	S	0,044	0,040	0,31	0,030
	S _r	0,034	0,030	0,023	0,023
Pr	$[I(L_{\alpha 1,2})/I(L_{\beta 1})]_{cpeg.}$	1,324	1,310	1,317	1,304
	S	0,041	0,035	0,015	0,013
	S _r	0,031	0,026	0,011	0,010

Воспроизводимость отношения интенсивностей рентгеновских линий *L*-серии редкоземельных элементов, измеренных в режиме полного внешнего отражения возбуждающего излучения

Таблица 2

Влияние спектрального наложения линий La $L_{\rm B1}$ и Pr $L_{a1,2}$ на погрешность измерения интенсивности линии Pr $L_{a1,2}$ при нахождении разностных спектров

Масса элемента н	Погрешность измерения интенсивно-	
La (мешающий)	Pr (определяемый)	сти $\operatorname{Pr}L_{\alpha 1,2}$, %
1	10	0,1
10	10	0,4
100	10	0,9

количеств РЗЭ при совместном присутствии в минеральных водах. На первом этапе проводили измерение спектров индивидуальных нитратов РЗЭ (содержание металлов на кварцевой подложке-отражателе составляет $2^{1}10^{-1}-2^{1}10^{2}$ нг) с последующим сглаживанием спектров по алгоритму Савицкого-Голея в программе MS Excel. После этого выполняли проверку линейности функциональной зависимости измеренной интенсивности вторичного излучения от содержания РЗЭ на подложке в интервале значений энергии 4-10 кэВ. Затем измеряли и сглаживали спектр концентрата РЗЭ с добавкой внутреннего стандарта, определяли лантан (элемент с наименьшим атомным номером) по линии LaL_a, почти свободной от спектральных наложений. Вычисление L-спектра лантана, соответствующего найденному содержанию, проводили путем линейного преобразования измеренного спектра нитрата лантана. Далее вычитали из спектра концентрата рассчитанный спектр нитрата лантана. Определение церия, празеодима, неодима и самария проводили по аналогичному алгоритму, позволяющему последовательно исключать влияние спектрального наложения *L*-линий РЗЭ с меньшими атомными номерами на результаты количественного анализа.

С увеличением числа математических операций умножения и вычитания спектров относительная погрешность определения РЗЭ увеличивается, однако не превышает 15–20%, если отношение содержания аналитов не превышает одного порядка (табл. 3). Метрологические характеристики разработанного способа определения РЗЭ в воде представлены в табл. 4.

Таким образом, предложенный в работе гибридный подход позволяет определять лантан, церий, празеодим, неодим и самарий в диапазоне от десятков нг/л до десятков мкг/л. В табл. 5 представлены результаты анализа природных

Таблица З

Правильность результатов определения ионов редкоземельных элементов в модельных растворах при совместном присутствии методом РФА ПВО

Масса элемента на отражателе, нг $(n = 5, P = 0.95)$					
La		Pr		Nd	
введено	найдено	введено	найдено	введено	найдено
10	10±1	10	10±2	10	9±1
10	10±2	30	29±4	50	54±7
30	29±3	10	11±2	30	28±3
50	51±6	30	28±4	10	12±2

Таблица 4

Метрологические характеристики рентгенофлуоресцентного определения редкоземельных элементов в воде

Элемент	<i>С</i> _{мин} , нг/л	<i>С</i> _н , нг/л	<i>К</i> _{конц.}	<i>s_r</i> (100 нг/л)
La	15	50	$1,74 \cdot 10^3$	0,09
Се	14	46	$1,80 \cdot 10^3$	0,09
Pr	16	52	1,44.10 ³	0,11
Nd	16	55	$1,28 \cdot 10^3$	0,10
Sm	12	41	$1,47 \cdot 10^3$	0,08

О б о з н а ч е н и я: $c_{\text{мин}}$ – минимальный предел обнаружения, $c_{\text{н}}$ – нижняя граница определяемого содержания, $K_{\text{конц}}$ – коэффициент концентрирования, s_r – относительное стандартное отклонение.

Таблица 5

Элемент	Содержание, нг/л (<i>n</i> = 5, <i>P</i> = 0,95)			
	«Рычал-Су»		«Архыз»	
	МС ИСП [4]	РФА ПВО	МС ИСП [4]	РФА ПВО
La	73±4	81±8	$< c_{_{ m H}}$	$< c_{_{ m H}}$
Ce	130±7	124±15	114±8	120±10
Pr	42±5	< C _H	< C _H	< C _H
Nd	41±6	< C _H	45±4	< c _H
Sm	92±8	100±10	61±5	56±7

Результаты определения редкоземельных элементов в образцах природной минеральной воды методами ИСП МС и РФА ПВО

минеральных вод «Архыз» и «Рычал-Су». Полученные результаты удовлетворительно согласуются с данными, полученными методом МС ИСП [4].

Чувствительность разработанной гибридной методики недостаточна для определения некоторых РЗЭ, например празеодима и неодима, в природной минеральной воде. В настоящей работе проведена теоретическая оценка относительной эффективности возбуждения рентгеновской флуоресценции лантана и лантанидов излучением рентгеновских трубок с молибденовым и вольфрамовым анодом. Расчеты выполнены с применением алгоритма, описанного в статье [15], и значений фундаментальных параметров взаимодействия рентгеновского излучения с веществом, приведенных в монографии [5]. Использование первичного излучения WL_{α} (8,4 кэВ) вместо Мо K_{α} (17,5 кэВ) приводит к росту интенсивности L_{α} -линий РЗЭ в 9,4–9,6 раза. Увеличение чувствительности средства измерения позволит определять в природных минеральных водах ионы всех металлов, изученных в работе.

В работе использовано оборудование, приобретенное за счет средств Программы развития Московского университета. Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 14-23-00012).

СПИСОК ЛИТЕРАТУРЫ

- 1. Перельман А.И. Геохимия. М., 1988.
- 2. Чудаева В.А., Чудаев О.В. // Вестн. ДВО РАН. 2005. № 3. С. 66.
- Амелин В.Г., Подколзин И.В., Соловьёв А.И., Третьяков А.В. // Вода: химия и экология. 2012. С. 79.
- 4. Подколзин И.В., Амелин В.Г., Третьяков А.В. // Масс-спектрометрия. 2012. Т. 9. С. 253.
- 5. Alov N.V. // Inorganic Materials. 2011. Vol. 47. P. 1.
- 6. Блохин М.А., Швейцер И.Г. Рентгеноспектральный справочник. М., 1982.
- 7. Пашкова Г.В., Ревенко А.Г. // Аналитика и контроль. 2013. Т. 17. С. 10.
- 8. Holyńska B., Ostachowicz B., Węgrzynek D. // Spectrochimica Acta B. 1996. Vol. 51. P. 769.
- 9. Misra N.L., Singh Mudher K.D., Adya V.C., Rajeswari

B., Venugopal V. // Spectrochimica Acta B. 2005. Vol. 60. P. 834.

- 10. Margui E., Zawisza B., Sitko R. // Trends in Analyt. Chem. 2014. Vol. 53. P. 73.
- 11. Marguí E., Sagué M., Queralt I., Hidalgo M. // Analyt. Chem. Acta. 2013. Vol. 786. P. 8.
- 12. Marguí E., Queralt I., Hidalgo M. // Journal of Analyt. Atom. Spectr. 2013. Vol. 28. P. 266.
- 13. Marguí E., Queralt I., Floor G.H., Hidalgo M., Kregsamer P., Román-Ross G., Streli C. // Analyt. Chem. 2010. Vol. 82. P. 7744.
- 14. *Рябчиков Д.И., Рябухин В.А.* Аналитическая химия редкоземельных элементов и иттрия. М., 1966. 379 с.
- 15. Finkelshtein A.L., Pavlova T.O. // X-ray Spectrometry. 1999. Vol. 28. P. 27.

TOTAL-REFLECTION X-RAY FLUORESCENCE DETERMINATION OF RARE EARTH ELEMENTS IN MINERAL WATER

K.V. Oskolok*, O.V. Monogarova, N.V. Alov

(Division of Analytical Chemistry; *e-mail: oskolok@analyt.chem.msu.ru)

The approach for the determination of a lanthanum, cerium, praseodymium, neodymium and samarium in mineral water by total-reflection X-ray fluorescence analysis is proposed. In this work the combined technique of preliminary concentration of rare earth elements is used. This procedure includes two stages – co-precipitation of metal hydroxides on a collector – iron(III) hydroxide – and dispersive liquid-liquid microextraction of their complex compounds with 1-(2-pyridylazo)-2-naphthol by chloroform in the presence of ethanol. By means of the developed hybrid approach perhaps the simultaneous determination of the specified metals in mineral water in range $n \cdot (10^{-2}-10^{1}) \ \mu g \cdot \Gamma^{-1}$. Results of the analysis of natural waters «Arkhyz» and «Rychal-Su» by the extraction and totalreflection X-ray fluorescence way offered in work are confirmed by the literary data obtained by inductively coupled plasma mass spectrometry.

Key words: total-reflection X-ray fluorescence analysis, dispersive liquid-liquid microextraction, rare earth elements, mineral water.

Сведения об авторах: Осколок Кирилл Владимирович – доцент кафедры аналитической химии химического факультета МГУ, канд. хим. наук (oskolok@analyt.chem.msu.ru); Моногарова Оксана Викторовна – доцент кафедры аналитической химии химического факультета МГУ, канд. хим. наук (o_monogarova@mail.ru); Алов Николай Викторович – вед. науч. сотр. кафедры аналитической химии химического факультета МГУ, канд. физ.-матем. наук, доцент (alov@analyt.chem.msu.ru).