УДК 54:51-7

РАСЧЕТ И СВОЙСТВА ФРАКТАЛЬНЫХ ДЕСКРИПТОРОВ В РЯДУ АЛКАНОВ С,...С.

В.Ю. Григорьев¹, Л.Д. Григорьева²

(¹Институт физиологически активных веществ РАН; ²Факультет фундаментальной физико-химической инженерии МГУ имени М.В. Ломоносова)

Для расчета молекулярных дескрипторов в ряду из 74 алканов использована дискретная дифференциальная функция распределения (гистограмма) межатомных расстояний. На ее основе вычислены фрактальные размерности (дескрипторы) четырех типов. Выявлена связь фрактальных дескрипторов между собой, а также с числом атомов и точечной группой симметрии молекул.

Ключевые слова: КССА, КССС, фрактальная размерность, фрактальный дескриптор.

Междисциплинарные исследования играют важную роль при получении нового знания об окружающем нас мире. Одним из инструментов для проведения такого рода исследований является интегральный подход «количественная связь – структура – активность/структура – свойство» (QSAR/QSPR) [1]. При этом для описания структуры химических соединений используются численные характеристики (дескрипторы). В настоящее время их число достигает нескольких тысяч [2], однако поиск новых структурных параметров продолжается.

Новым направлением в этой области является использование идей фрактальной геометрии, включая понятие о фрактальной размерности, которые широко проникли в различные области знания [3]. Для характеристики поверхности больших молекул (биополимеров) и оценки ее «шероховатости» (roughness) в публикациях [4, 5] предложено использовать величину фрактальной размерности D. Теоретически эта величина должна находиться в пределах от 2 до 3. Для лизоцима, рибонуклеазы А и супероксиддисмутазы были рассчитаны средние значения D = 2.4. В дальнейшем этот подход был модифицирован другими исследователями путем расширения числа рассматриваемых молекул и детализации их поверхности [6-8]. При этом установлено, что активные центры биополимеров и остальные области молекул имеют разную «шероховатость» (разные величины D).

Представляется, что методы оценки фрактальной размерности поверхности больших молекул выглядят неподходящими для обычных малых молекул из-за того, что размеры пробных и исследуемых молекул в этом случае сопоставимы между собой. В литературе предложены другие подходы для оценки фрактальных параметров. Так, в работе [9] использован метод размножения молекул для получения молекулярного ансамбля, обладающего фрактальными свойствами. На основе рассчитанных фрактальных параметров получены количественные модели «структура – противоопухолевая активность» в ряду макроциклических пиридинофанов и их ациклических аналогов. Авторы публикации [10] предложили другой подход для расчета фрактальных дескрипторов. Он основан на использовании дифференциальных функций распределения (гистограмм) межатомных расстояний и расчете соответствующих фрактальных размерностей.

Цель настоящей работы – дальнейшее развитие предложенного подхода, расчет новых молекулярных фрактальных дескрипторов и исследование их свойств в ряду алканов C₂...C₉.

Расчет фрактальной размерности

Дескрипторы должны быть инвариантными по отношению к молекулярному сдвигу и вращению, а также к обозначению и нумерации молекулярных атомов [11]. Дифференциальные функции распределения межатомных расстояний соответствуют этому требованию, поэтому они могут использоваться для создания новых молекулярных дескрипторов. Для их расчета необходимо вычислить межатомные расстояния (r) и определить число межатомных расстояний (f(r)), попадающих в определенный интервал. В качестве примера расчета рассмотрим молекулу пропана. На основе декартовых координат атомов, полученных из трехмерной структуры, вычисляли расстояния между атомами. На рис. 1 представлена гистограмма межатомных расстояний, рассчитанная с шагом 0,01 и 0,01 Å по осям абсцисс и ординат соответственно, т.е. с размером квадратного пикселя 0,01.

Для дальнейших расчетов гистограмму оцифровывали, т.е. представляли в виде квадратной

Рис. 1. Дифференциальная функция распределения (гистограмма) межатомных расстояний пропана

бинарной фрактальной матрицы, где окрашенным и неокрашенным пикселям соответствовали величины 1 и 0. Размер матрицы определяли на основе максимума из двух величин: $X = (r_{\text{макс}} - r_{\text{мин}})/0,01$ и $Y = (f(r)_{\text{макс}} - f(r)_{\text{мин}})/0,01$, где X – максимальный размер гистограммы по оси r; $r_{\text{макс}}$ – максимальное межатомное расстояние; $r_{\text{мин}}$ – минимальное межатомное расстояние; Y – максимальный размер гистограммы по оси f(r); $f(r)_{\text{макс}}$ – максимальная величина f(r); $f(r)_{\text{мин}}$ – минимальная величина f(r).

Для пропана

$$X = (4,31 - 1,12)/0,01 = 319,$$

Y = (8 - 0)/0,01 = 800,

т.е. размер фрактальной матрицы составляет 800×800 = 640 000 пикселей.

Фрактальную размерность определяли «клеточным» методом путем покрытия фрактальной матрицы квадратами переменной величины и подсчетом числа квадратов, которые пересекали окрашенные пиксели [12]. Локальную фрактальную размерность рассчитывали по уравнению (1):

$$\log(M) = \log C - D \log(L), \tag{1}$$

где M – минимальное число квадратов со стороной L, необходимых для покрытия фрактала; D – «клеточная» фрактальная размерность (со знаком минус); C – константа.

Для определения величины D проводили измерения при разных величинах L, меняя этот параметр от 1 до 10 с шагом 1, при этом соответствующая площадь квадратов варьировала от 1 до 100 пикселей. В результате для молекулы пропана получены данные, которые хорошо описываются прямой линией (рис. 2). Рассчитанная величина Dсоставила 1,08.

Геометрические параметры и точечные группы симметрии молекул рассчитывали с помощью компьютерной программы HyperChem [13]. Для этого использовали полуэмпирический квантово-химический метод AM1 с полной оптимизацией структуры молекул. Для каждого исследуемого соединения на основе оптимизированных 3D-структур рассчитали по 3224 дескриптора с помощью программы DRAGON [2]. Для проведения регрессионного анализа применяли модифицированную компьютерную программу SVD [14]. В качестве статистических характеристик уравнений использовали следующие параметры: *n* – число точек, R^2 – квадрат коэффициента линейной корреляции, s – стандартное отклонение, Q^2 – квадрат коэффициента линейной корреляции в условиях скользящего контроля с выбором по одному. При необходимости проводили автошкалирование дескрипторов путем вычитания средних значений и деления на стандартное отклонение.

Результаты и их обсуждение

В таблице представлены результаты расчета фрактальных дескрипторов.

Исследуемый ряд состоит из 74 соединений. При этом минимальное число атомов в молекуле равно 8, а максимальное – 29. Анализируемые молекулы относятся к одной из восьми точечных групп симметрии (C_1 , C_i , C_s , C_{2h} , C_{2v} , C_{3v} , D_{3d} , T_d). Величина общего фрактального дескриптора D изменяется в достаточно больших пределах: от 1,00 (этан) до 1,48 (2,4-диметил-3-этилпентан). Теоретически для рассматриваемых геометрических объектов фрактальная размерность может меняться от 1 (гладкая кривая) до 2 (плоскость).

Рис. 2. Зависимость числа квадратов (*M*), покрывающих фрактальную матрицу пропана, от размера квадрата (*L*)

п/п	Соединение	CAS RN	N	S	$D \pm \Delta$	$D_{\rm val} \pm \Delta$	$D_{v\mathrm{Dw}} \pm \Delta$	$D_{\mathrm{unb}}\pm\Delta$
1	Этан	74-84-0	8	D_{3d}	1,00±0,01	1,00±0,01	1,00±0,01	1,00±0,01
2	Пропан	74-98-6	11	C _{2v}	1,08±0,02	1,00±0,01	1,08±0,03	1,17±0,03
3	Бутан	106-97-8	14	C _{2h}	1,11±0,02	1,00±0,01	1,13±0,03	1,15±0,02
4	2-Метилпропан	75-28-5	14	C _{3v}	1,09±0,02	1,03±0,01	1,13±0,04	1,13±0,03
5	Пентан	109-66-0	17	C _{2v}	1,11±0,02	1,00±0,01	1,11±0,02	1,16±0,02
6	2-Метилбутан	78-78-4	17	<i>C</i> ₁	1,27±0,01	1,04±0,02	1,24±0,01	1,37±0,03
7	2,2-Диметилпропан	463-82-1	17	T_d	1,02±0,01	1,00±0,01	1,00±0,01	1,00±0,01
8	Гексан	110-54-3	20	C_{2h}	1,11±0,01	1,00±0,01	1,15±0,02	1,11±0,01
9	2-Метилпентан	107-83-5	20	C_1	1,31±0,02	1,03±0,02	1,27±0,03	1,34±0,02
10	3-Метилпентан	96-14-0	20	C_s	1,23±0,02	1,04±0,03	1,22±0,03	1,26±0,03
11	2,2-Диметилбутан	75-83-2	20	C_s	1,27±0,02	1,03±0,01	1,26±0,03	1,31±0,03
12	2,3-Диметилбутан	79-29-8	20	C_{2h}	1,20±0,02	1,05±0,02	1,19±0,03	1,16±0,02
13	Гептан	142-82-5	23	C _{2v}	1,13±0,01	1,00±0,01	1,13±0,02	1,18±0,02
14	2-Метилгексан	591-76-4	23	C_1	1,33±0,02	1,03±0,01	1,28±0,03	1,39±0,02
15	3-Метилгексан	589-34-4	23	C_1	1,34±0,02	1,04±0,03	1,28±0,03	1,39±0,02
16	2,2-Диметилпентан	590-35-2	23	C_s	1,28±0,01	1,04±0,03	1,29±0,03	1,27±0,01
17	2,3-Диметилпентан	565-59-3	23	C_1	1,40±0,01	1,07±0,03	1,36±0,01	1,45±0,02
18	2,4-Диметилпентан	108-08-7	23	C_s	1,27±0,02	1,05±0,03	1,25±0,03	1,29±0,02
19	3,3-Диметилпентан	562-49-2	23	C _{2v}	1,21±0,02	1,06±0,02	1,21±0,02	1,19±0,02
20	3-Этилпентан	617-78-7	23	C_1	1,36±0,02	1,05±0,03	1,28±0,04	1,44±0,02
21	2,2,3-Триметилбутан	464-06-2	23	C_s	1,31±0,02	1,06±0,02	1,22±0,01	1,38±0,04
22	Октан	111-65-9	26	C _{2h}	1,14±0,02	1,00±0,01	1,11±0,02	1,18±0,02
23	2-Метилгептан	592-27-8	26	C_1	1,35±0,02	1,02±0,01	1,29±0,03	1,43±0,02
24	3-Метилгептан	589-81-1	26	C_1	1,33±0,02	1,03±0,02	1,28±0,03	1,38±0,02
25	4-Метилгептан	589-53-7	26	C_s	1,29±0,02	1,03±0,02	1,27±0,03	1,32±0,03
26	3-Этилгексан	619-99-8	26	C_1	1,38±0,02	1,05±0,03	1,32±0,02	1,44±0,03
27	2,2-Диметилгексан	590-73-8	26	C_s	1,27±0,01	1,04±0,03	1,29±0,01	1,29±0,01
28	2,3-Диметилгексан	584-94-1	26	C_1	1,38±0,01	1,07±0,04	1,39±0,03	1,43±0,03
29	2,4-Диметилгексан	589-43-5	26	<i>C</i> ₁	1,35±0,02	1,06±0,03	1,32±0,02	1,40±0,02
30	2,5-Диметилгексан	592-13-2	26	C _i	1,27±0,02	1,05±0,03	1,23±0,02	1,28±0,02
31	3,3-Диметилгексан	563-16-6	26	C_s	1,26±0,01	1,06±0,02	1,30±0,01	1,24±0,02
32	3,4-Диметилгексан	583-48-2	26	C _i	1,31±0,02	1,06±0,03	1,27±0,01	1,31±0,02
33	3-Этил-2-метилпентан	609-26-7	26	<i>C</i> ₁	1,43±0,02	1,06±0,03	1,33±0,01	1,50±0,03
34	3-Этил-3-метилпентан	1067-08-9	26	<i>C</i> ₁	1,41±0,02	1,07±0,02	1,38±0,02	1,47±0,02
35	2,2,3-Триметилпентан	564-02-3	26	<i>C</i> ₁	1,42±0,01	1,08±0,02	1,38±0,02	1,45±0,02
36	2,2,4-Триметилпентан	540-84-1	26	C_1	1,39±0,01	1,07±0,02	1,33±0,02	1,45±0,03
37	2,3,3-Триметилпентан	560-21-4	26	C_1	1,39±0,01	1,06±0,01	1,30±0,01	1,46±0,02
38	2,3,4-Триметилпентан	565-75-3	26	C_s	1,36±0,02	1,08±0,02	1,33±0,02	1,38±0,02

Фрактальные дескрипторы 74 алканов

Окончание таблицы

							0.1017.141	
п/п	Соединение	CAS RN	N	S	$D{\pm}\Delta$	$D_{val} \pm \Delta$	$D_{v\mathrm{Dw}} \pm \Delta$	$D_{\rm unb}{\pm}\Delta$
39	2,2,3,3-Тетраметилбутан	594-82-1	26	D_{3d}	1,14±0,03	1,02±0,01	1,10±0,02	1,12±0,02
40	Нонан	111-84-2	29	C_{2v}	1,14±0,01	1,00±0,01	1,06±0,01	1,19±0,02
41	2-Метилоктан	3221-61-2	29	<i>C</i> ₁	1,37±0,01	1,02±0,01	1,27±0,02	1,44±0,02
42	3-Метилоктан	2216-33-3	29	C_1	1,36±0,02	1,03±0,02	1,28±0,02	1,41±0,02
43	4-Метилоктан	2216-34-4	29	C_1	1,35±0,01	1,03±0,02	1,29±0,03	1,40±0,02
44	3-Этилгептан	15869-80-4	29	C_1	1,38±0,02	1,04±0,02	1,32±0,03	1,46±0,02
45	4-Этилгептан	2216-32-2	29	C_1	1,39±0,02	1,04±0,02	1,29±0,02	1,44±0,03
46	2,2-Диметилгептан	1071-26-7	29	C_s	1,30±0,01	1,04±0,03	1,34±0,02	1,31±0,02
47	2,3-Диметилгептан	3074-71-3	29	C_1	1,37±0,02	1,06±0,03	1,39±0,03	1,41±0,03
48	2,4-Диметилгептан	2213-23-2	29	C_1	1,38±0,01	1,06±0,03	1,31±0,02	1,45±0,03
49	2,5-Диметилгептан	2216-30-0	29	C_1	1,38±0,01	1,05±0,03	1,31±0,01	1,44±0,02
50	2,6-Диметилгептан	1072-05-5	29	C_s	1,29±0,02	1,04±0,02	1,30±0,01	1,31±0,03
51	3,3-Диметилгептан	4032-86-4	29	C_s	1,30±0,01	1,06±0,02	1,30±0,01	1,31±0,02
52	3,4-Диметилгептан	922-28-1	29	C_1	1,39±0,01	1,06±0,03	1,36±0,03	1,45±0,02
53	3,5-Диметилгептан	926-82-9	29	C_s	1,31±0,02	1,07±0,03	1,27±0,02	1,34±0,03
54	4,4-Диметилгептан	1068-19-5	29	C _{2v}	1,21±0,02	1,04±0,02	1,26±0,02	1,19±0,02
55	3-Этил-2-метилгексан	16789-46-1	29	<i>C</i> ₁	1,42±0,01	1,08±0,04	1,41±0,02	1,48±0,02
56	4-Этил-2-метилгексан	3074-75-7	29	C_1	1,41±0,02	1,06±0,03	1,33±0,03	1,48±0,02
57	3-Этил-3-метилгексан	3074-76-8	29	<i>C</i> ₁	1,41±0,02	1,06±0,01	1,33±0,02	1,49±0,03
58	3-Этил-4-метилгексан	3074-77-9	29	<i>C</i> ₁	1,42±0,01	1,06±0,03	1,35±0,02	1,49±0,02
59	2,2,3-Триметилгексан	16747-25-4	29	<i>C</i> ₁	1,42±0,01	1,05±0,01	1,41±0,02	1,46±0,03
60	2,2,4-Триметилгексан	16747-26-5	29	<i>C</i> ₁	1,40±0,01	1,06±0,02	1,34±0,02	1,45±0,02
61	2,2,5-Триметилгексан	3522-94-9	29	<i>C</i> ₁	1,38±0,01	1,05±0,03	1,33±0,03	1,41±0,03
62	2,3,3-Триметилгексан	16747-28-7	29	<i>C</i> ₁	1,40±0,01	1,06±0,02	1,38±0,02	1,44±0,02
63	2,3,4-Триметилгексан	921-47-1	29	<i>C</i> ₁	1,42±0,01	1,10±0,03	1,41±0,02	1,47±0,03
64	2,3,5-Триметилгексан	1069-53-0	29	<i>C</i> ₁	1,39±0,01	1,08±0,04	1,32±0,02	1,42±0,03
65	2,4,4-Триметилгексан	16747-30-1	29	<i>C</i> ₁	1,40±0,01	1,06±0,02	1,35±0,02	1,46±0,02
66	3,3,4-Триметилгексан	16747-31-2	29	<i>C</i> ₁	1,43±0,01	1,06±0,02	1,38±0,02	1,47±0,02
67	3,3-Диметилпентан	1067-20-5	29	C_s	1,40±0,02	1,13±0,04	1,35±0,02	1,43±0,03
68	2,2-Диметил-3-этилпентан	16747-32-3	29	C_1	1,45±0,02	1,07±0,02	1,38±0,01	1,53±0,03
69	2,3-Диметил-3-этилпентан	16747-33-4	29	C_1	1,45±0,01	1,07±0,02	1,40±0,02	1,50±0,03
70	2,4-Диметил-3-этилпентан	1068-87-7	29	C_1	1,48±0,01	1,12±0,03	1,40±0,02	1,53±0,03
71	2,2,3,3-Тетраметилпентан	7154-79-2	29	C_s	1,37±0,02	1,04±0,01	1,46±0,01	1,42±0,03
72	2,2,3,4-Тетраметилпентан	1186-53-4	29	<i>C</i> ₁	1,45±0,01	1,08±0,02	1,43±0,02	1,50±0,02
73	2,2,4,4-Тетраметилпентан	1070-87-7	29	C _{2v}	1,30±0,03	1,08±0,03	1,30±0,02	1,28±0,04
74	2,3,3,4-Тетраметилпентан	16747-38-9	29	C_s	1,38±0,02	1,07±0,02	1,40±0,02	1,38±0,04

О б о з н а ч е н и я. CAS RN – регистрационный номер; N – число атомов в молекуле; S – точечная группа симметрии; D – общий фрактальный дескриптор, рассчитанный на основе всех межатомных расстояний; D_{val} – фрактальный дескриптор, рассчитанный на основе межатомных расстояний между валентно связанными атомами; D_{vdw} – фрактальный дескриптор, рассчитанный на основе межатомных расстояний между атомами, связанными Ван-дер-Ваальсовыми силами; D_{unb} – фрактальный дескриптор, рассчитанный на основе межатомных расстояний между несвязанными атомами; Δ – стандартная ошибка.

В целом, с ростом числа атомов величина общего фрактального дескриптора увеличивается (рис. 3). Этот рост обусловлен тем, что с увеличением числа атомов быстро возрастает число межатомных расстояний, как $N \cdot (N-1)/2$. Это приводит к увеличению числа окрашенных пикселей во фрактальной матрице и росту *D*. Однако при одном и том же числе атомов в молекуле наблюдаются довольно значительные изменения величин фрактального дескриптора. Так, в случае изомеров C_9H_{20} (N=29) величина *D* меняется от 1,14 (нонан) до 1,48 (2,4-диметил-3-этилпентан). Объяснить наблюдаемое явление можно, обратившись к рис. 4.

Представленные на рис. 4 данные свидетельствуют о том, что между фрактальной размерностью и точечной группой симметрии (при одинаковом числе атомов) существует связь в виде

Рис. 3. Зависимость общего фрактального дескриптора (D) от числа атомов (N)

Рис. 4. Зависимость общего фрактального дескриптора (D) от точечной группы симметрии (S) для изомеров C_9H_{20}

тенденции. Отметим при этом, что группа C_1 включает в качестве операции симметрии $\{E\}$, C_s содержит $\{E, \sigma_h\}$, а C_{2v} состоит из $\{E, C_2, \sigma_v\}$, т.е. с увеличением числа элементов симметрии в группе величина D уменьшается. Это связано с уменьшением числа уникальных межатомных расстояний (при сохранении их общего числа), что приводит, в свою очередь, к упрощению структуры фрактальной матрицы и, как следствие, к уменьшению фрактальной размерности.

Однако даже при одинаковом числе атомов и в рамках одной группы симметрии величина D изомеров изменяется в некотором интервале. Чтобы объяснить это явление, проанализируем структуру соединений на основе дифференциальной функции распределения межатомных расстояний (рис. 1). При этом все межатомные расстояния в молекуле можно разбить на три группы. В первую группу включены межатомные расстояния между валентно связанными атомами. Ко второй группе относятся межатомные расстояния между атомами, которые связаны Ван-дер-Ваальсовыми силами, третья группа образуется из межатомных расстояний между несвязанными атомами. Типы пар атомов для каждого расстояния определяли путем анализа матриц связности и расчета суммы Ван-дер-Ваальсовых радиусов. Так, в молекуле пропана CH₃-CH₂-CH₃ общее число межатомных расстояний равно 11.10/2 = 55. Из них 10 межатомных расстояний относятся к первой группе (8 С-Н; 2 С-С), 22 - ко второй группе (7 H...H; 14 С...H; 1 С...С) и 23 – к третьей группе. Для каждой группы были рассчитаны соответствующие величины локальных фрактальных дескрипторов (таблица):

$$D_{val} = 1,00 \pm 0,01;$$

 $D_{vdw} = 1,08 \pm 0,03;$
 $D_{uub} = 1,17 \pm 0,03.$

Из таблицы видно, что локальные фрактальные дескрипторы имеют разные значения и, следовательно, изменение величины общего фрактального дескриптора D в некотором интервале можно связать с существованием различных типов межатомных расстояний.

Таким образом, каждое из 74 исследованных соединений может быть охарактеризовано с помощью четырех фрактальных дескрипторов. Рассмотрим соотношения между ними на примере ряда изомеров C₉H₂₀.

$$D = -0.11(\pm 0.07) + 0.31(\pm 0.08) D_{val} + 0.20(\pm 0.04) D_{vdw} + 0.63(\pm 0.03) D_{unb}.$$
 (2)

При использовании автошкалированных величин D_{val} , D_{vdw} , D_{unb} :

$$D = 1,37(\pm 0,02) + 0,008(\pm 0,002) D_{val} + 0,014(\pm 0,003) D_{vdw} + 0,053(\pm 0,002) D_{unb}, \quad (3)$$

$$n = 35; R^2 = 0,978; s = 0,01; Q^2 = 0,966.$$

Полученная регрессионная модель имеет хорошие статистические характеристики. Общий фрактальный дескриптор может быть представлен в виде линейной комбинации локальных фрактальных дескрипторов. Из них наибольший вклад вносит величина $D_{\rm unb}$. Вклад величин $D_{\rm vdw}$ и $D_{\rm val}$ менее значим.

Аналогичная модель может быть получена для всего ряда исследованных соединений.

$$D = -0.33(\pm 0.08) + 0.46(\pm 0.09) D_{val} + 0.28(\pm 0.04) D_{vdw} + 0.60(\pm 0.03) D_{unb}.$$
 (4)

При использовании автошкалированных величин D_{val} , D_{vdw} , D_{unb} :

$$D = 1,32(\pm 0,01) + 0,013(\pm 0,003) D_{val} + 0,028(\pm 0,004) D_{vdw} + 0,076(\pm 0,004) D_{unb}, \quad (5)$$

$$n = 74; R^2 = 0,984; s = 0,01; Q^2 = 0,981.$$

В моделях (4) и (5), так же как и в моделях (2) и (3), наибольший вклад в общий фрактальный дескриптор вносит локальный фрактальный дескриптор, рассчитанный на основе расстояний между несвязанными атомами. Вклады D_{vdw} и D_{val} имеют меньшее значение.

Для того чтобы выяснить связь новых фрактальных дескрипторов с другими известными молекулярными дескрипторами, были рассчитаны и проанализированы коэффициенты линейной корреляции между 4 дескрипторами (D, D_{val} , D_{vdw} , D_{unb}) и 3224 дескрипторами, рассчитанными с помощью компьютерной программы DRAGON для исследуемого ряда алканов из 74 соединений. В результате было установлено, что наибольшая линейная связь наблюдается между парами

$$D$$
 и $R5v$ ($R^2 = 0,707$),
 D_{val} и $R8m$ с $R^2 = 0,659$,
 D_{vdw} и RTv с $R^2 = 0,666$,
 D_{uub} и $H0u$ с $R^2 = 0,658$,

где *R5v*, *R8m*, *RTv* и *H0u* представляют собой GETAWAY-дескрипторы [15], которые рассчитываются на основе 3D-структур. Однако величины коэффициентов корреляции не позволяют говорить о тесной линейной связи между анализируемыми молекулярными дескрипторами.

Рассмотренный в настоящей работе метод расчета фрактальных дескрипторов не имеет каких-либо принципиальных ограничений на размер анализируемых молекул. В частности, мы рассчитали величины дескрипторов для членов гомологического ряда C_nH_{2n+2}:

пентаконтан (
$$C_{50}H_{102}$$
)
 $D = 1,20 \pm 0,02,$
 $D_{val} = 1,00 \pm 0,01,$
 $D_{vdw} = 1,02 \pm 0,01,$
 $D_{unb} = 1,25 \pm 0,02;$
гектан ($C_{100}H_{202}$)
 $D = 1,32 \pm 0,02,$
 $D_{val} = 1,00 \pm 0,01,$
 $D_{vdw} = 1,01 \pm 0,01,$
 $D_{unb} = 1,37 \pm 0,02.$

Сравнивая эти величины с данными таблицы ($\mathbb{N} \ge 1-3$, $\mathbb{N} \ge 5$, $\mathbb{N} \ge 8$, $\mathbb{N} \ge 13$, $\mathbb{N} \ge 22$, $\mathbb{N} \ge 40$), можно отметить, что в ряду исследованных соединений с ростом числа атомов величины D и D_{unb} в основном увеличиваются, D_{val} не меняется, а D_{vdw} проходит через максимум.

Таким образом, для расчета новых молекулярных дескрипторов использована дифференциальная функция распределения (гистограмма) межатомных расстояний. С помощью «клеточного» алгоритма вычислены фрактальные размерности 74 алканов. Эти размерности были использованы в качестве четырех новых фрактальных дескрипторов. Они рассчитаны на основе различных типов межатомных расстояний – все расстояния, расстояния между валентно связанными атомами, расстояния между атомами, находящимися в ван-дер-ваальсовом контакте, и расстояния между несвязанными атомами. Показано, что общий фрактальный дескриптор может быть представлен в виде линейной комбинации локальных фрактальных дескрипторов. Установлено, что максимальный линейный коэффициент корреляции R^2 фрактальных дескрипторов с известными 3224 DRAGON-дескрипторами не превышает величину 0,707. Разработанные в настоящей работе фрактальные дескрипторы могут быть использованы для описания структуры как малых, так и больших молекул при конструировании QSAR/QSPR-моделей, включая количественные модели «структура-свойства» полимерных нанокомпозиций. Фрактальные дескрипторы можно рассматривать в качестве количественной меры сложности геометрической структуры молекул. В этом качестве они могут найти применение при изучении процессов и состояний, в которых происходит изменение этой характеристики, например, при исследовании фазовых переходов «кристалл-газ», при анализе влияния структуры полимеров на их свойства и др.

Проект выполняется в МГУ имени М.В. Ломоносова в рамках Соглашения с Минобрнауки РФ от 05.06.14 № 14.607.21.0002 (уникальный идентификатор проекта RFMEFI60714X0002). Исследования выполнены при финансовой поддержке Минобрнауки РФ.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Roy K., Kar S., Das R.N.* A Primer on QSAR/QSPR Modeling. Fundamental Concepts. Springer International Publishing, 2015.
- 2. http://www.talete.mi.it/.
- 3. *Мандельброт Б*. Фрактальная геометрия природы. М., 2002. 656 с.
- Pfeifer P., Welz U., Wippermann H. // Chem. Phys. Lett. 1985. Vol. 113. P. 535.
- 5. Lewis M., Rees D.C. // Science. 1985. Vol. 230. P. 1163.
- 6. Aqvist J., Tapia J. // J. Mol. Graph. 1987. Vol. 5. P. 30.
- Pettit F.K., Bowie J.U. // J. Mol. Biol. 1999. Vol. 285. P. 1377.
- 8. Todoroff N., Kunze J., Schreuder H., Hessler G., Baringhaus K.-H., Schneider G. // Mol. Inf. 2014. Vol. 33. P. 588.

- Artemenko A.G., Kovdienko N.A., Kuz'min V.E., Kamalov G.L., Lozitskaya R.N., Fedchuk A.S., Lozitsky V.P., Dyachenko N.S., Nosach L.N. // Experimental Oncology. 2002. Vol. 24. P. 123.
- 10. Григорьев В.Ю., Раевский О.А. // Журн. общ. химии. 2011. Т. 81. С. 353.
- 11. http://www.moleculardescriptors.eu/.
- 12. Кроновер Р.М. Фракталы и хаос в динамических системах. Основы теории. М., 2000.
- 13. http://www.hyper.com/.
- 14. Форсайт Дж., Малькольм М., Моулер К. Машинные методы математических вычислений. М., 1980.
- 15. Consonni V., Todeschini R., Pavan M. // J. Chem. Inf. Comput. Sci. 2002. 42. P. 682.

Поступила в редакцию 08.12.15

CALCULATION AND PROPERTIES OF FRACTAL DESCRIPTORS FOR C₂...C₉ ALKANES

V.Yu. Grigorev¹, L.D. Grigoreva²

(¹Institute of Physiologically Active Compounds RAS; ²Department of Fundamental Physical-Chemical Engineering)

For calculation of molecular descriptors among 74 alkanes is used discrete differential distribution function (histogram) of interatomic distances. On its basis are calculated fractal dimensions (descriptors) of 4 types. Relation of fractal descriptors between themselves, and also with number of atoms and point group of symmetry of molecules is revealed.

Key words: QSAR, QSPR, fractal dimension, fractal descriptor.

Сведения об авторах: Григорьев Вениамин Юрьевич – вед. науч. сотр. отдела компьютерного молекулярного дизайна ИФАВ РАН, докт. хим. наук (beng@ipac.ac.ru); Григорьева Людмила Дмитриевна – доцент факультета фундаментальной физико-химической инженерии МГУ имени М.В. Ломоносова, канд. физ.-матем. наук (ldg@)physchem.msu.ru).