ФАЗОВЫЕ РАВНОВЕСИЯ В ЧЕТЫРЕХКОМПОНЕНТНОЙ СИСТЕМЕ Al-Ni-Cu-Zr ПРИ 1123 К И КОНЦЕНТРАЦИИ ЦИРКОНИЯ БОЛЕЕ 30 АТ.%

К.Б. Калмыков, Н.Е. Дмитриева, С.Ф. Дунаев, Д.М. Кондратьев

(кафедра общей химии, nnn19@yandex.ru)

Методами рентгенофазового анализа, рентгеноспектрального микроанализа, сканирующей электронной микроскопии и дифференциальной сканирующей калориметрии определены фазовые равновесия в четырехкомпонентной системе Al–Ni–Cu–Zr при 1123 К и концентрации циркония более 30 ат.%. В системе обнаружена область существования четырехкомпонентной жидкой фазы с температурой плавления 1110 К, при концентрации меди и циркония 15,1 и 58,0 ат.% соответственно. Содержание остальных компонентов варьируется в пределах 13,4–19,5 Al и 7,4–13,5 ат. % Ni. Впервые экспериментально установлено существование семи четырехфазных равновесий.

Ключевые слова: фазовые равновесия, рентгеноспектральный микроанализ, рентгенофазовый анализ, объемные аморфные материалы.

Аморфные сплавы – класс металлических твердых тел, характеризующийся отсутствием дальнего порядка и наличием ближнего порядка в расположении атомов. Металлические сплавы в аморфном состоянии обладают особыми магнитными, электрическими, коррозионными и механическими свойствами. Необходимые для аморфизации величины критической скорости охлаждения изменяются в широких пределах от сверхвысоких $(10'-10^8)$ до 1–10² К/с, практически достигая значений этого параметра, свойственного традиционным оксидным стеклам. Реализация столь низких скоростей охлаждения позволяет получать массивные аморфные металлические материалы с поперечным сечением от единиц до десятков миллиметров. В настоящее время аморфные сплавы успешно применяют при изготовлении преобразователей, магнитных и термочувствительных элементов. Кроме того, они весьма перспективны для разработки новых коррозионностойких и каталитических материалов, использующихся в различных жестких средах. Благодаря своей высокой прочности и твердости, а также относительной легкости, аморфные сплавы могут применяться в качестве конструкционных и композиционных материалов, в том числе в виде их компонентов в сочетании с полимерными, металлическими и керамическими матрицами для снижения массы и объема аппаратуры.

Однако весь спектр аморфных материалов и возможных их свойств до настоящего времени еще не раскрыт. Это обусловлено тем, что с момента открытия возможности аморфизации металлических сплавов до настоящего времени изучение их превращения

в стеклообразное состояние опирается в большей степени на практические исследования, где основным является интуитивный поисковый метод, поскольку каких либо достоверных критериев, определяющих способность расплава к стеклообразованию, не существует. Так, авторы [1, 2] указывают, что во многих системах наибольшую стеклообразующую способность показывают сплавы, лежащие в неэвтектических областях. Однако в работе [3] установлено, что в системе Al-Cu-Ni-Zr в области составов Al(8,7-13,0), Cu(8,0–18,0), Ni(11,9–17,5), Zr(54,0–65,0) at.% стеклообразующая способность сплавов, лежащих вблизи существования эвтектики, выше, чем у сплавов вне эвтектической области. В последнем случае определяющую роль может играть кинетический фактор. Согласно [3], температура плавления сплавов из указанной области лежит в интервале 1100-1140 К. При данной температуре диффузионная подвижность атомов циркония ($T_{nn} = 2128$ K) низка, и формирование кристаллической структуры фаз, участвующих в эвтектической реакции, затруднительно, особенно если равновесные составы данных фаз значительно отличаются от состава эвтектики. Поэтому при переходе эвтектического расплава из жидкого в твердое состояние может происходить образование аморфной фазы даже при низких скоростях охлаждения. Следовательно, для точного определения составов сплавов с высокой стеклообразующей способностью становится актуальной информация об эвтектических составах, участвующих в эвтектических реакциях фазах, а также о составе данных фаз, т.е. необходима информация о равновесной диаграмме состояния соответствующей системы. Поэтому целью данной работы стало изучение фазовых равновесий при 1123 К в системе Al–Cu–Ni–Zr в области составов, богатых цирконием.

Методика проведения исследований и экспериментальные данные

В качестве исходных материалов использовали Al (чистота 99,99%), Zr йодидный (чистота 99,99%), Ni электролитический (чистота 99,95%), Cu электролитическая (чистота 99,5%). Образцы массой 7 г получали методом жидкофазного синтеза по методике, описанной в [4, 5]. Полученные слитки раскалывали на части и подвергали гомогенизирующему отжигу в вакуумированных кварцевых ампулах в печах электросопротивления с последующей закалкой в воду. Гомогенизацию проводили при температуре 1123 К в течение 600 и 1000 ч. Точность поддержания температуры составила $\pm 1^{\circ}$. Давление остаточных газов не превышало $5 \cdot 10^{-2}$ Па.

Образцы исследовали методами сканирующей электронной микроскопии на приборе «LEO EVO-50 XVP» («Karl Zeiss», Германия) при ускоряющем напряжении 15 кВ, энергодисперсионного микроанализа (ЭДМА) с использованием детектора «INCA energy 450» («Oxford Instruments»), рентгенофазового анализа методом порошка (РФА) («STOE STADI P», Cu $K_{\alpha 1}$ Ge (111) – монохроматор), дифференциально сканирующей калориметрии на приборе «Jupiter STA 449 F1» (Германия) в атмосфере гелия, скорость нагрева 20 град/мин. Составы приготовленных сплавов представлены в табл. 1. Точность определения составов методом ЭДМА составляла ±0,2 ат.%.

Обсуждение результатов

В основу исследования взаимодействия элементов в системе Al–Ni–Cu–Zr положены результаты более ранних работ [4–6], посвященных изучению трех тройных подсистем: Al–Ni–Zr, Al–Cu–Zr и Cu– Ni–Zr. Необходимо отметить, что системы Al–Ni–Zr и Al–Cu–Zr характеризуются наличием большого количества тройных соединений, которые обозначаются в литературе буквой греческого алфавита т, причем нумерация фаз, имеющих разную кристаллическую структуру в разных системах, не всегда совпадает. В данной работе для удобства описания взаимодействия элементов в четырехкомпонентной системе Al– Ni–Cu–Zr введена сквозная нумерация всех тройных фаз, относящихся к четырехкомпонентной системе в области составов, богатой цирконием (табл. 2).

При изучении системы Al–Cu–Zr (рис. 1) изначально [5] было установлено, что тройная фаза τ_6 –Al_{2-x}Cu_xZr находится в равновесии с интерметаллидом Zr₄Al₃. Однако это соединение стабильно лишь до температуры 1305 К, тогда как расположенная рядом фаза Zr₃Al₂ – до 1753 К. Следовательно, Zr₃Al₂ – более термодинамически стабильное соединение. По-видимому, фаза τ_6 должна находиться в равновесии с фазой на основе соединения Zr₃Al₂. Это предположение было проверено экспериментально и нашло свое подтверждение: именно соединение Zr₃Al₂ находится в равновесии с тройными (τ_5 , τ_6) и двойными (CuZr₂ и Zr₃Al) фазами, как показано на рис.1, *б*.

Трехкомпонентная система Cu–Ni–Zr характеризуется значительной растворимостью третьего компонента в фазах на основе двойных соединений. Согласно результатам исследования, представленным в работе [4], фаза на основе NiZr имеет наибольшую область гомогенности и растворяет до 33 ат.% Cu, а фаза на основе соединения CuZr растворяет до 6 ат.% Ni. Однако эти данные не согласуются с результатами, полученными в настоящем исследовании для четырехкомпонентной системы. По-видимому, это связано с тем, что фазы на основе соединений NiZr и CuZr имеют близкий состав и плохо разрешаются на микроструктурах. Поэтому для уточнения взаимодействия элементов в области составов, отвечающих расположению вышеупомянутых фаз, были проведе-

Таблица 1

Номер	Состав, ат.%				Номер Состав, ат.%				
сплава	Al	Zr	Cu	Ni	сплава	Al	Zr	Cu	Ni
1	15	50	25	10	7	15	35	30	20
2	10	50	27	13	8	10	60	27	3
3	5	55	27	13	9	5	65	27	3
4	5	45	30	20	10	10	75	10	5
5	10	45	30	15	11	20	65	10	5
6	10	40	30	20	12	7,5	65	17,5	10

Составы сплавов системы Al-Ni-Cu-Zr

Рис. 1. Части изотермических сечений систем при температуре 1123 К: Al–Ni–Zr (*a*); Al–Cu–Zr (*б*); Cu–Ni–Zr (*в*)

Таблица 2

Фаза	Состав	Пространственная группа, структурный тип	Параметры решетки	Название в соответствующей тройной системе		
τ ₁	Al ₂ NiZr ₆	P-62m, K ₂ UF ₆	<i>a</i> = 7,92Å; c = 3,36Å [7]	τ ₄		
τ ₂	AlNi ₄ Zr ₅	P4/mbm, U ₃ Si ₂	a = 7,18Å; c = 3,31Å [8]	τ ₇		
τ ₃	AlNiZr	P-62m, Fe ₂ P	<i>a</i> = 6,92Å; c=3,47Å [9]	τ ₁		
τ ₄	AlNi ₂ Zr	Fm-3m, AlCu ₂ Mn	<i>a</i> = 6,10Å [10]	τ ₂		
τ ₅	Al ₂ Cu ₃ Zr ₅	неизвестен		τ ₃		
τ ₆	Al _{2-x} Cu _x Zr	Fd-3m, MgCu ₂	<i>a</i> = 7,40Å [11]	τ ₅		
τ ₇	AlCu ₂ Zr	Fm-3m, AlCu ₂ Mn	<i>a</i> = 6,20Å [11]	τ ₄		

Соответствие названий т-фаз, существующих в тройных системах и в системе Al-Ni-Cu-Zr

ны дополнительные исследования. На рис. 2 показана микроструктура сплава состава $Zr_{56}Cu_{14}Ni_{30}$, а также составы равновесных фаз. Видно, что фазы NiZr и CuZr действительно плохо различаются по контрасту. По уточненным данным в системе Cu–Ni–Zr при 1123 К в области составов 40–100 ат.% Zr существует тройное равновесие NiZr + CuZr + Ni₂Zr (рис. 1, *в*), а не равновесие NiZr + CuZr + Cu₂Zr, как было показано в работе [4]. В табл. 3 приведен фазовый состав исследованных сплавов системы Al–Ni–Cu–Zr после отжига при 1123 К. На рис. 3 показаны микроструктуры некоторых образцов.

Данные ЭЗМА и СЭМ указывают на то, что в четверной системе присутствуют трехфазные равновесия, которые не существуют в тройных системах, исследованных ранее [4–6], а именно: $Zr + \tau_1 + Zr_2Cu$, $\tau_5 + ZrCu + Zr_2Cu$, $\tau_5 + \tau_6 + ZrCu$, $\tau_6 + \tau_7 + Zr_7Cu_{10}$. Кроме того, в сплавах №№ 1, 3, 9, 11, 12 обнаружена фаза состава $Al_{13,4-19,5}Ni_{7,4-13,5}Cu_{15,1}Zr_{58,0}$, которая отсутствует в тройных системах. Было сделано предположение, что это четырехкомпонентная жидкая фаза *L*. На рис. 4 представлены данные ДСК сплава № 12 (табл. 1), которые указывают на то, что начало плавления образца происходит ниже температуры термического отжига на 20 градусов, а именно при 1101 К.

Это подтверждает предположение о существовании *L*-фазы на изотермическом сечении исследуемой системы. Однако по данным [12] при 1123 К в тройной системе Al–Cu–Zr также должна существовать *L*-фаза состава Al₁₀Cu₄₀Zr₅₀. Полученные авторами [12] результаты не согласуются с данными наших исследований [5]. На рис. 5 представлены микроструктуры образцов системы Al–Cu–Zr состава Al_{10,4}Cu_{40,3}Zr_{49,3} и Al_{5,2}Cu_{39,8}Zr_{55,0} до и после термообработки при 1123 К в течение 1000 ч.

Микроструктуры образцов до термообработки соответствуют микроструктурам, приведенным в работе [12]. Однако после термообработки оба образца стали трехфазными, лежащими в области τ_6 + ZrCu + Zr₂Cu. Таким образом, расплав состава Al₁₀Cu₄₀Zr₅₀ переходит в твердое состояние, практически не меняя структуру жидкости, но в процессе длительной термической обработки распадается на равновесные кристаллические фазы,

Рис. 2. Микроструктура сплава состава Zr₅₆Cu₁₄Ni₃₀

Таблица З

Номер сплава	Фаза	Состав, ат.%				Номер	مم	Состав, ат.%			
		Al	Ni	Cu	Zr	сплава	Ψα3α	Al	Ni	Cu	Zr
1	τ ₆	29,8	20,4	16,9	32,9	7	τ ₇	23,6	16,1	35,8	24,5
	ZrCu	5,1	14,4	31,6	48,9		Zr ₇ Cu ₁₀	3,1	24,9	31,7	40,3
	τ ₅	23,8	5,5	21,5	49,2		Zr ₂ Cu	1,3	3,5	29,3	65,9
	L	19,1	7,4	15,6	57,9	8	τ ₅	22,9	2,9	24,4	49,8
2	τ ₅	22,9	5,0	23,2	48,9	1	ZrCu	5,5	8,8	36,0	49,7
	ZrCu	4,9	13,6	32,6	48,9	- 9	Zr ₃ Al ₂	31,8	0,5	10,4	57,3
	τ ₆	28,0	19,7	19,1	33,2		Zr ₂ Cu	1,1	4,1	29,2	65,6
3	τ ₅	21,0	9,4	16,6	57,3		τ ₅	23,6	2,8	22,2	51,4
	ZrCu	4,0	15,0	31,6	49,4		L	20,8	4,0	15,8	59,4
	Zr ₂ Cu	1,3	6,7	27,0	65,0	10	τ ₁	19,7	8,9	2,8	68,6
	L	16,7	9,4	16,6	57,3		Zr ₂ Cu	1,0	4,3	28,1	66,6
4, 5	τ ₆	26,4	19,5	21,8	32,3		Zr	6.0	1.0	1.0	92.0
	τ ₇	24,3	11,2	39,6	24,9	11	Zr ₂ Cu	1,0	5,0	28,6	65,4
	ZrCu	2,6	16,3	31,9	49,2		τ ₁	20,4	9,1	2,3	68,2
6	τ ₆	26,1	21,4	19,6	32,9		L	24,4	4,1	13,0	58,5
	τ ₇	22,9	14,5	37,1	25,5	12	τ	21,0	10,7	1,9	66,4
	Zr ₇ Cu ₁₀	5,4 20,5	20.5	22.0	40.2		Zr ₂ Cu	0,6	8,3	25,3	65,8
			33,0	40,5		L	13,7	13,5	14,6	58,2	

Фазовый состав образцов системы Al-Ni-Cu-Zr после отжига при 1123 К

Рис. 3. Микроструктура сплавов системы Al–Ni–Cu–Zr (табл. 1): a – сплав № 1; δ – сплав № 3; e – сплав № 7; e – сплав № 10

ДСК (мВт/мг)

т.е. полученные данные указывают на то, что L-фаза при 1123 К существует только в четырехкомпонентной системе.

Растворимость алюминия в двойных фазах системы Ni-Cu-Zr уменьшается с увеличением концентрации никеля или меди. В твердом растворе на основе соединений Zr₇Cu₁₀ и Zr₇Ni₁₀ содержание Al

практически не изменяется. Фаза т₅ тройной системы Al-Cu-Zr растворяет до 8 ат.% никеля. Максимальная растворимость меди в тройном соединении т₁ системы Al-Ni-Zr составляет около 3 ат.%. Фаза т₆ систе-Al-Cu-Zr растворяет до 20 ат.% Ni. Между изо-МЫ структурными соединениями τ_4 системы Al-Ni-Zr и τ_7 системы Al-Cu-Zr должен образовываться непрерывный ряд твердых растворов. Растворимость четвертого компонента в тройных соединениях τ_2 и τ_3 системы Al-Ni-Zr определить не удалось, поскольку данные фазы не были обнаружены в исследуемых образцах.

Образцы №№ 1, 3, 9 (табл. 3) являются четырехфазными, что указывает на существование в системе следующих четырехфазных равновесий:

- 1) $\tau_5 + \tau_6 + ZrCu + L;$
- 2) $\tau_5 + ZrCu + Zr_2Cu + L;$
- 3) $\tau_5 + Zr_3Al_2 + Zr_2Cu + L.$

Наличие в системе Al-Ni-Cu-Zr трехфазного равновесия Zr + τ₁ + Zr₂Cu (сплав № 10) и существование в тройной системе Al-Ni-Zr равновесия $Zr + \tau_1 + Zr_2Ni$, а также равновесия между фазами Zr₂Cu и Zr₂Ni (система Ni-Cu-Zr) однозначно указывает на то, что на диаграмме Al-Ni-Cu-Zr существует четырехфазное равновесие $Zr + \tau_1 + Zr_2Cu +$

Рис. 5. Микроструктуры образцов системы Al–Cu–Zr: литые $(a - Al_{10,4}Cu_{40,3}Zr_{49,3}; 6 - Al_{5,2}Cu_{39,8}Zr_{55,0};$ после термообработки при 1123 К в течение 1000 ч $(a - Al_{10,4}Cu_{40,3}Zr_{49,3}; 6 - Al_{5,2}Cu_{39,8}Zr_{55,0};$ $r - Al_{52}Cu_{398}Zr_{550}$

Zr₂Ni (4). На рис. 6, а приведены положения четырехфазных равновесий 1 и 3 на изотермическом сечении системы Al-Ni-Cu-Zr.

Установленные трехфазные равновесия т₅ + $\begin{array}{l} ZrCu + Zr_2Cu \ (\underline{\mathbb{N}}{\underline{\mathbb{N}}} \ 8), \ \tau_5 + \tau_6 + ZrCu \ (\underline{\mathbb{N}}{\underline{\mathbb{N}}} \ 2), \ \tau_6 + \tau_7 + \\ Zr_7Cu_{10} \ (\underline{\mathbb{N}}{\underline{\mathbb{N}}} \ 6), \ \tau_1 + Zr_2Cu + L \ (\underline{\mathbb{N}}{\underline{\mathbb{N}}} \ 11, \ \underline{\mathbb{N}}{\underline{\mathbb{N}}} \ 12) \ (\text{tads.} \ 3) \end{array}$ и данные о характере фазовых равновесий в соответствующих тройных системах, позволяют сделать вывод о наличии в исследуемой системе при 1123 К еще трех четырехфазных равновесий:

5) $\tau_5 + \tau_6 + ZrCu + Zr_2Cu;$

- 6) $\tau_1 + Zr_2Cu + Zr_2Ni + L;$ 7) $\tau_6 + \tau_7 + Zr_7Cu_{10} + ZrCu.$

Наличие экспериментально установленных четырехфазных равновесий указывает на то, что в системе Al-Ni-Cu-Zr должен существовать еще ряд равновесий:

8) $\tau_1 + Zr_3Al_2 + Zr + Zr_2Cu;$ 9) α -Zr + β -Zr + Zr₂Ni + Zr₂Cu; 10) $\tau_5 + \tau_6 + Zr_3Al_2 + L;$ 11) $\operatorname{Zr}_{3}\operatorname{Al}_{2}$ + $\operatorname{Zr}_{3}\operatorname{Al}$ + $\operatorname{Zr}_{2}\operatorname{Cu}$ + L; 12) $Zr_2Cu + ZrCu + Zr_2Ni + L;$ 13) $\tau_1 + \tau_3 + Zr_3Al_2 + L$.

Кроме того, с большой долей вероятности можно предположить, что тройные фазы т₁, т₂, т₃ системы Al-Ni-Zr также находятся в равновесии с L-фазой, образуя еще три четырехфазных равновесия:

14)
$$\tau_1 + \tau_2 + Zr_2Ni + L;$$

15) $\tau_1 + \tau_2 + \tau_3 + L;$
16) $\tau_2 + ZrNi + Zr_2Ni + L.$

Рис. 6. Положение четырехфазных равновесий на изотермическом сечении системы Al-Ni-Cu-Zr при 1123 К: a – 1 и 3; б – 4 и 5

На рис. 7, *а* показаны данные ДСК образца состава $Al_{14,9}Ni_{10,1}Cu_{17,5}Zr_{58,4}$, приготовленного в области существования *L*-фазы. Сплав получился однофазным с температурой плавления 1102 К. Это также подтверждает наличие четырехкомпонентной фазы в исследуемой системе при 1123 К. Необходимо отметить, что данный образец при охлаждении на медном подоне в печи электродугового плавления не образует аморфной структуры. Этот же образец, расплавленный в индукционной печи и закаленный из расплава в холодную воду становится аморфным (рис. 7, δ).

На основании полученных данных о строении изотермического сечения диаграммы состояния четырехкомпонентной системы Al–Ni–Cu–Zr при 1123 К можно дать рекомендации по выбору области оптимальных составов для получения объемных аморфных сплавов. Поскольку стеклообразующая способность сплавов данной системы, лежащих вблизи существования эвтектики, выше, чем у сплавов вне эвтектической области, выбор составов необходимо осуществлять в области существования *L*-фазы: Al_{13,4-19,5}Ni_{7,4-13,5}Cu_{15,1}Zr_{58,0}.

Рис. 7. Данные ДСК сплава состава Al_{14.9}Ni_{10,1}Cu_{17,5}Zr_{58,4}: a – литой; δ – закаленный

Исследование выполнено при поддержке РФФИ (проект № 14-03-00547-а).

СПИСОК ЛИТЕРАТУРЫ

- 1.*Choi-Yim H., Xu D.H., Johnson W.L.* // Appl. Phys. Lett. 2003. 82. P. 1030.
- 2. Tan H., Zhang Y., Ma D., et al. // Acta Mater. 2003. 51. P. 4551.
- Cai A., Xiong X., Li J., et al. // Mater. Sci. Eng. A. 2009. 516. P. 100.
- 4. Калмыков К.Б., Зверева Н.Л., Дмитриева Н.Е., Дунаев С.Ф., Кондратьев Д.М. // Вестн. Моск. ун-та. Сер. 2. Химия. 2011. **52.** С. 298.
- 5. Калмыков К.Б., Дмитриева Н.Е., Зверева Н.Л., Дунаев С.Ф., Кондратьев Д.М. // Вестн. Моск. ун-та. Сер. 2. Химия. 2012. **53**. С. 246.
- Кондратьев Д.М., Калмыков К.Б., Дмитриева Н.Е., Дунаев С.Ф. // Вестн. Моск. ун-уа. Сер. 2. Химия. 2012.
 53. № 6. С. 374.
- Zavaliy I.Yu., Pecharsky V.K., et al. // J. Alloys Comp. 1999. 283. P. 106.
- 8. Leineweber A., Nitsche H., Hlukhyy V., Hoffmann R.D., Pöttgen R. // Intermetallics. 2006. 14. P. 685.
- Zumdick M., Hoffmann R.D., Pöttgen R. // Z. Naturforsch. B. 1999. 54. P. 45.
- 10. Wernick J.H., Hull G.W. Jr., Geballe T.H., Bernardini J.E., Waszczak J.V. // Mater. Lett. 1983. 2. P. 90.
- Tretyachenko L. // Material Sciense International Team. MSIT Landolt-Bornstein New Series 2007. IV/11A2. P. 206.
 Yokoyama Y. // J. Non-Cryst. Solids. 2003. 316. P. 104.

Поступила в редакцию 15.05.14

PHASE EQUILIBRIA IN THE Al-Ni-Cu-Zr SYSTEM AT 1123 K AND MORE THAN 30 ATOMIC PERCENT OF ZIRCONIUM

K.B. Kalmykov, N.E. Dmitrieva, S.F. Dunaev, D.M. Kondratiev

(Division of General Chemistry)

By using of the X-ray analysis, the X-ray microanalysis, the scanning electron microscopy and the differential scanning calorimetry the phase equilibria in the quaternary Al–Ni–Cu–Zr system at 1123 K and zirconium concentrations more than 30 at.% were determined. The area of existence of the four-component liquid phase with melting point 1110 K, at concentrations of copper and zirconium 15.1 and 58.0 at.% respectively was detected in the system. The content of other components vary in 13,4–19,5 Al and 7,4–13,5 at.% Ni. Firstly the existence of seven four phase equilibria was determined experimentally.

Key words: phase equilibria, X-ray microanalysis, X-ray analysis, bulk amorphous materials.

Сведения об авторах: Калмыков Константин Борисович – вед. науч. сотр. кафедры общей химии химического факультета МГУ, канд. хим. наук (kalmykov@laincom.chem.msu.ru); Дмитриева Наталья Евгеньевна – ст. науч. сотр. кафедры общей химии химического факультета МГУ, канд. хим. наук (nnn19@ yandex.ru); Дунаев Сергей Федорович – профессор кафедры общей химии химического факультета МГУ (rusina@laincom.chem.msu.ru); Кондратьев Дмитрий Михайлович – аспирант кафедры общей химии химического факультета МГУ.