УДК 547.279+547.313

ВЗАИМОДЕЙСТВИЕ НЕПРЕДЕЛЬНЫХ СОЕДИНЕНИЙ С СИСТЕМОЙ ТИОБИСАМИН–SOHal₂

Н.В. Зык, А.Ю. Гаврилова, М.А. Нечаев, О.Б. Бондаренко, Н.С. Зефиров

(кафедра органической химии; e-mail: augava@gmail.com)

Разработан удобный метод синтеза ди(β-галогеналкил)сульфидов на основе взаимодействия непредельных соединений с системой тиобисамин–SOHal₂ (Hal = Cl, Br). Реакция протекает по электрофильному механизму с образованием продуктов *транс*присоединения. Взаимодействие с алкинами приводит к образованию смеси региоизомерных дивинилсульфидов.

Ключевые слова: тиобисамины, тионилгалогениды, алкены, диены, алкины, сульфенилирование.

Ди(в-галогеналкил)сульфиды, являющиеся потенциально биологически активными соединениями [1], можно использовать в качестве полупродуктов в синтезе β-замещенных алкилсульфидов, сульфоксидов и сульфонов. Основной метод получения ди(βхлоралкил)сульфидов основан на электрофильном присоединении дихлорида серы (дихлорангидрида сульфоксиловой кислоты) к олефинам, однако этот метод неудобен с препаративной точки зрения из-за необходимости работы со свежеполученным SCl₂ [2]. Возможность синтеза ди(β-бромалкил)сульфидов путем прямого присоединения SBr₂ к олефинам не изучена в связи с крайне малой устойчивостью дибромида серы. Недавно был разработан новый метод синтеза как ди(β-хлоралкил)сульфидов, так и ди(βбромалкил)сульфидов путем взаимодействия алкенов с тиобисаминами в присутствии оксогалогенидов фосфора [3, 4]. На одном примере была показана возможность использования в этих реакциях в качестве со-реагента хлористого тионила [5].

В рамках наших работ, посвященных возможности активации слабых электрофилов тионилгалогенидами [6, 7], мы изучили взаимодействие алкенов, диенов и алкинов с системами:

тиобисморфолин (ТБМ) – SOHal₂ (Hal = Cl, Br),

тиобиспиперидин (ТБП) – SOHal₂ (Hal = Cl, Br). Было установлено, что циклогексен, норборнен, циклогексадиен-1,4 и циклооктадиен-1,5 реагируют с образованием *транс*-ди(β -галогеналкил)сульфидов (схема 1), при этом наилучшие выходы продуктов сульфенгалогенирования достигаются при прибавлении тионилгалогенидов к тиобисамину с последующим добавлением алкена при температуре не выше -40°C (табл. 1).

При использовании в качестве со-реагента хлористого тионила оптимальным является соотношение $R_2NSNR_2:SOCl_2 = 1:2$, а в случае бромистого тионила необходимо использовать эквимольные количества тиобисамина и $SOBr_2$, так как использование избытка бромистого тионила приводит к образованию продуктов бромирования алкенов.

Таким образом, на первый взгляд в системах тиобисамин–SOHal₂ генерируются дигалогениды серы (SHal₂), которые вступают в реакцию с C=C-связью олефинов. Однако в ряде случаев были получены результаты, не согласующиеся с этим предположением. Во-первых, в то время как присоединение SCl₂ к 1,4-циклогексадиену в зависимости от условий реакции приводит к образованию либо 2,5-бис-эндо-7-тиабицикло[2.2.1]гептана, либо к полимерному продукту [8], нами были выделены ди(2галогенциклогекс-4-енил)сульфиды **За,b** независимо от вариации условий (табл. 1).

Во-вторых, известно, что при взаимодействии дихлорида серы с норборнадиеном образуется единственный продукт атаки электрофилом эндо-стороны

Схема 1

$$X = 0, Hal = Cl, Br$$

			~			
Алкен	Формула продукта	SOHal ₂	Соотношение реагентов $C=C:(R_2N)_2S:SOHal_2$	$(R_2N)_2S$	Продукт	Выход, %
	s	SOCl ₂	2:1:2	ТБМ	1a	99 ^a
			2:1:2	ТБП	1a	95 ^a
	$\left \left(\begin{array}{c} \begin{array}{c} \\ \end{array} \right) \right _{2}$	SOBr ₂	2:1:1	ТБМ	16	38 ^a
			2:1:1	ТБП	16	56 ^a
Ν		SOCl ₂	2:1:2	ТБМ	2a	97 ⁶
			2:1:2	ТБП	2a	99 ⁶
	Hal $/_2$	SOBr ₂	2:1:1	ТБМ	26	36 ^в
	2		2:1:1	ТБП	26	85 ^в
	S	SOCl ₂	2:1:2	ТБМ	3a	90 ^r
			2:1:2	ТБП	3a	91 ^r
	$\left \left(\begin{array}{c} \bullet & \operatorname{Hal} \right)_2 \right $	SOBr ₂	2:1:1	ТБМ	36	59 ^r
			2:1:1	ТБП	36	60 ^r
	Hal	SOCl ₂	1:1:2	ТБМ	4a	64
	S S		1:1:2	ТБП	46	99
		SOBr ₂	1:1:1	ТБМ	4a	55
			1:1:1	ТБП	4б	65

Продукты взаимодействия циклог	гексена, норборнена, цин	клогексадиена-1,4 и циклооктадиена-1	1,5
с тиобисморфолином (ТІ	БМ) и тиобиспиперидио	м(ТБП) в присутствии SOHal ₂	

П р и м е ч а н и е. Соотношение *dl:мезо* составляет: ^а 5:4; ^б 3:2; ^в 5:3; ^г соединения **За** и **Зб** получены в виде *dl-* и *мезо-*изомеров, однако определить их соотношение не удалось из-за близости значений сигналов протонов в спектре ЯМР ¹Н.

диена – тиациклан **5а** [9]. При взаимодействии норборнадиена с тиобиспиперидином в присутствии тионилхлорида (ТБП:SOCl₂ = 1:2) и с тиобисморфолином в присутствии тионилбромида (ТБМ:SOBr₂ = 1:1) наряду с тиацикланами **5а,6** было зафиксировано образование продуктов *экзо*-атаки C=C-связи – дисульфидов **6а,6** (табл. 2).

В реакции норборнадиена с тиобиспиперидином в присутствии тионилбромида (ТБП:SOBr₂ = 1:1) кроме тиациклана **56** были выделены эндо- и экзосульфенамиды **7** и **8**, при этом проведение реакции при большом разбавлении реакционной смеси ведет к росту выхода эндо-сульфенамида **7** с одновременным уменьшением выхода продукта **56** (схема 2). И наоборот, использование двукратного избытка $SOBr_2$ позволяет увеличить выход тиациклана **56** за счет полного исчезновения *эндо*-сульфенамида **7** (табл. 2). При сульфенилировании норборнадиена системой тиобисморфолин: $SOBr_2 = 1:2$ выход тиациклана также растет, но побочно образуются продукты бромирования норборнадиена.

Учитывая вышеизложенные факты, мы не исключаем возможности образования *in situ* дигалогенидов серы. Тем не менее мы предполагаем, что при взаимодействии алкенов с системами тиобисамин-тионилгалогениды реализуется последовательная активация

SOHal ₂	Тиобисамин	соотношение реагентов	Продукты эндо-а	таки	Продукты	<i>экзо</i> -атаки
		$C=C:(R_2N)_2S:SOHal_2$	5	7	6	8
SOCl ₂	ТБМ	1:1:2	100	-	-	-
	ТБП	1:1:2	84	-	15	-
SOBr ₂	ТБМ	1:1:1	34	-	22	-
		1:1:2	67 ^a	-	-	-
	ТБП	1:1:1	56	3	-	31
		1:1:1 ⁶	26	36	-	30
		1:1:2	61	-	16	13

Продукты взаимодействия норборнадиена с тиобисморфолином (ТБМ) и тиобиспиперидиом (ТБП) в присутствии ŜÔHal,

^а Выделены продукты бромирования норборнадиена; ^б реакцию проводили при большом разбавлении.

одной S-N-связи тиобисамина (схема 3): при взаимодействии тиобисамина с тионилгалогенидом образуется аминосульфенгалогенид (I), который вступает в реакцию с алкеном с образованием сульфенамида (II). Последующее взаимодействие сульфенамида (II) с тионилгалогенидом или (R₂N)₂S(O)Hal (для

Hal

случая Hal = Br) приводит к образованию сульфенгалогенида (III), который может либо реагировать с алкеном, давая сульфид (IV), либо превращаться в дисульфид (V) (образованию дисульфида должно способствовать повышение температуры проведения реакции).

Схема 2

$$\begin{array}{c} (R_2N)_2S \\ SOHal \\ Hal = Cl (5a, 6a), Br (56, 66); \\ R = (-CH_2)_5, Hal = Br (7, 8) \end{array} \xrightarrow{Hal} \begin{array}{c} Hal \\ S \\ SoHal \\ Hal \\ S \\ Sa, 6 \\ Sa, 8 \\$$

Схема 3

Для подтверждения предложенной нами схемы мы изучили взаимодействие образующихся в результате реакции норборнадиена с морфолиносульфенбромидом смеси изомерных сульфенамидов 9 и 10 (9:10 = 1:1) с тионилгалогенидами (схема 4). В результате были выделены тиациклан 56 и дисульфид 66 (реакция с SOBr₂), тиацикланы 5а, 5в и дисульфид 66 (реакция с SOCl₂).

Очевидно, что тиациклан **5**в образуется из изомера **9**, а дисульфид **66** является продуктом димеризации сульфенгалогенидов **11а,6**, образующихся из изомера **10** (схема 5).

Тиациклан **5**а, образующийся при реакции сульфенамидов **9**, **10** с тионилхлоридом, является продуктом нуклеофильного замещения брома на хлор под действием SOCl₂. Так, при взаимодействии смеси тиацикланов **5**в и **5**а (**5**в:**5**а = 2,9:1,0) с избытком тионилхлорида было выделено исключительно соединение **5**а (схема 6).

Было найдено, что при взаимодействии норборнена с системой тиобисморфолин– $SOCl_2$ (1:1) основным продуктом реакции является сульфенамид 12, что согласуется с постадийной активацией S–Nсвязей тиобисамина (схема 7).

Схема 5

Для расширения модельного ряда и определения границ применимости предложенного нами метода сульфенилирования было изучено взаимодействие тиобисаминов с циклооктатетраеном (ЦОТ) в присутствии SOCl₂. Мы предполагали, что образующийся в ходе реакции сульфенхлорид **13** в зависимости от условий может претерпевать следующие превращения: реагировать межмолекулярно с образованием сульфидов (путь А); изомеризоваться с образованием бициклических продуктов (путь Б); перегруппировываться [10, 11] (путь В); вступать во внутримолекулярную AdE-реакцию с образованием изомеров 15–19 (путь Г) (схема 8).

Было найдено, что результат взаимодействия циклооктатетраена с тиобисаминами в присутствии тионилхлорида существенно зависит от времени проведения реакции. Так, при проведении реакции в течение 2 ч мы получили сложную смесь продуктов. Разделить полученные продукты методом колоночной хроматографии не удалось. Исследование реакционной смеси методом хромато-массспектрометрии показало, что на хроматограмме имеются три пика (один из них сильно уширен).

Схема 7

Каждому пику соответствует масс-спектр, имеющий одинаковую схему распада молекулярного иона, при этом массы и соотношения интенсивности молекулярного иона ($206 [M]^+$) и изотопных ионов (208 [M+2]⁺, 210 [M+4]⁺) соответствуют соединениям с брутто-формулой C₈H₈Cl₂S [12]. Тщательный анализ ПМР-спектров реакционных смесей позволил выделить четыре набора сигналов. Один из них состоит из четырех мультиплетов и соответствует симметричной структуре 19а [13]. В каждом из трех других наборов сигналов присутствуют по 8 мультиплетов протонов, и сигналы трех протонов проявляются в области 3.5-4.9 м.д., что позволяет исключить из рассмотрения триены и симметричные структуры. Таким образом, мы предполагаем, что кроме тиациклана 19а образуются тиациклан 16 и бициклический сульфенхлорид 14 в виде двух изомеров а и б (сигналы 14а и 14б в ПМР-спектре имеют похожий набор КССВ, которые симбатно уменьшаются при добавлении хлористого тионила) (табл. 3). Следует отметить, что строение изомеров 14а, б окончательно установлено не было. С одной стороны, определить расположение заместителей по набору констант КССВ в циклобутане не представляется возможным [14], а с другой стороны, использование специальных методов исследования (например, ЯЭО) для смеси четырех продуктов является некорректным (схема 9).

При проведении реакции в течение 24–48 ч нами был выделен единственный продукт – тиациклан **19а** (табл. 3). Циклооктатетраен (ЦОТ) менее реакционноспособен по сравнению с циклооктадиеном, поэтому оптимальное соотношение субстрата и реагентов в этой реакции – тетраен:тиобисамин:SOCl₂ = 1:2:4. Двукратный избыток реагентов не изменяет соотношения продуктов, однако позволяет достичь 100%-й конверсии ЦОТ.

При использовании в качестве со-реагента тионилбромида образование тиациклана 9-тиа-2,6бис(дибром)бицикло[3.3.1]нонадиена-2,6 **196** было зафиксировано в спектре ЯМР ¹Н в следовых количествах. Основными продуктами (в зависимости от соотношения тетраен:реагенты) являются бромиды **20**, **21** (схема 10), а также изомерные им бромиды и продукты ароматизации, выделить и идентифицировать которые не удалось (табл. 4).

Схема 9

Таблица 3

Тио-бис-амин	Условия проведения р	реакции	Вых продуг	коды ктов, %	Соотн	юшение продукт	юв,%	
		Время, ч	ЦОТ	14, 16,	1	4а,б	16	19a
	$C = C : (R_2 N)_2 S : SOCI_2$			19a	основной	минорный		
ТБМ	1:1:2	48	17,0	72	-	-	-	100
	1:2:4	24	-	65	-	-	-	100
ТБП	1:1:2	2	6,0	23	45	13	6	36
	1:1:2	48	5,0	46	18	8	2	72
	1:2:4	2	1,7	64	43	11	11	35
	1:2:4	48	_	70	4	2	4	90

Продукты взаимодействия ЦОТ с тиобисаминами в присутствии SOCl₂^a

^а Выходы и соотношение продуктов определяли по данным спектроскопии ЯМР ¹Н.

Условия проведен	ния реакции		Выход	ц продукта, % ^б	
ЦОТ:(R ₂ N) ₂ S:SOBr ₂	Время, ч	ЦОТ	196	20	21
1:1:1	2	7	7	10	-
1:1:1	48	2	9	15	-
1:2:2	48	35	4	2	_
1:2:4	2	-	16	-	63
1:2:4	48	_	12	-	84

Продукты взаимодействия ЦОТ с тиобисморфолином в присутствии SOBr,^а

^а Выходы и соотношение продуктов определяли по данным спектроскопии ЯМР ¹H; ⁶ везде, кроме опыта, где соотношение pearentroв = 1:2:4 (время реакции 48 ч), присутствуют неидентифицированные продукты бромирования и продукты ароматизации.

Схема 10

Полной конверсии ЦОТ удается достичь только при соотношении тетраен:тиобисамин:SOBr₂ = 1:2:4, однако в этом случае основным продуктом является тетрабромид **21** (табл. 4). Очевидно, что образование дибромида **20** – результат бромирования ЦОТ, что было подтверждено при проведении реакции этого соединения с эквимольным количеством брома **21** (схема 11):

Транс-расположение атомов брома в соединении **20** было доказано проведением эксперимента по ЯЭО. При облучении сигнала H^7CBr (δ 4.94 м.д.) наблюдается эффект Оверхаузера на протонах H^1 и H^6 ($\eta = 1\%$). При облучении сигнала H^8CBr (δ 4.65 м.д.) эффект Оверхаузера не наблюдался, что согласуется с представленной выше структурой.

Тетрабромид **21** образуется, вероятно, при бромировании соединения **20**, однако при взаимодействии

ЦОТ с двукратным избытком брома или тионилбромидом была получена сложная смесь продуктов [15, 16].

Таким образом, взаимодействие ЦОТ с тиобисморфолином в присутствии тионилгалогенидов может рассматриваться как препаративный метод синтеза только тиациклана **19а**.

Реакции алкинов (гептина-1 и фенилацетилена) с тиобисморфолином в присутствии тионилхлорида протекают гладко, с хорошими выходами. В результате реакции были выделены дивинилсульфиды. Образования тииранов зафиксировано не было, что согласуется с данными по присоединению дихлорида серы к алкинам [17]. При установлении структуры полученных соединений мы учитывали следующее: вопервых, на первой стадии возможно присоединение электрофильного реагента как по правилу Марковникова, так и против этого правила (при этом соотношение продуктов присоединения зависит как от условий проведения реакции (например, растворителя), так и от реагентов [18]); во-вторых, возможно образование Z- и Е-изомеров. Аналогичная ситуация наблюдается и на второй стадии присоединения уже образовавшегося винилсульфида. В общей сложности число всех возможных изомеров составляет девять. Однако известно, что электрофильное присоединение ди-

343

хлорида серы [17], аминосульфенхлоридов [18–21] и сульфенгалогенидов [18, 22] протекает, как правило, с образованием *транс*-продуктов, что позволило нам сократить число возможных изомеров до трех (**22–24**) (схема 12).

Данные о значениях химических сдвигов протонов винилхлоридов и сульфидов в спектрах ЯМР ¹Н весьма противоречивы [17, 19-22]. Поэтому для установления строения полученных изомеров мы использовали данные спектроскопии ЯМР ¹³С. Так, для соединения 23а химические сдвиги сигналов углеродов SHC= и ClHC= составляют соответственно 113.9 и 117.3 м.д., а углеродов SRC= и CIRC= - соответственно 137.4 и 140.0 м.д., т.е. сигналы углеродов, связанных с атомом хлора, сдвинуты в более слабое поле. Сигнал углерода H₂C-CCl= также находится в более слабом поле по сравнению с сигналом углерода Н₂С-CS=. Структуры 22а и 24а имеют ось симметрии, а следовательно, углероды при двойной связи эквивалентны и имеют одинаковые химические сдвиги. При этом химический сдвиг сигналов углеродов XHC= и YRC= составляет 118.6 м.д. и 136.3 м.д., т.е. сопоставление значений химических сдвигов с аналогичными значениями для соединения 23а позволяет сделать вывод, что X=Cl, а Y=S, что соответствует структуре **22а**. Химический сдвиг сигнала углерода H₂C-C= также имеет значение, соответствующее сигналу углерода H₂C-CS=. Таким образом, в ПМР-спектре соединений 22а и 23а сигналы протонов НССІ находятся в более слабом поле по сравнению с сигналом протона HCS соединения **23а**. Используя полученные результаты для соединений **22а** и **23а**, мы провели отнесение сигналов протонов и углеродов для соединений **226** и **236**.

Таким образом, реакция алкенов, диенов и алкинов с тиобисаминами в присутствии тионилгалогенидов является удобным методом синтеза ди(βгалогеналкил)сульфидов.

Экспериментальная часть

Спектры ЯМР ¹H, ¹³С регистрировали на спектрометре «Вгикег Avance» (рабочие частоты 400 и 100 МГц соответственно) при 28°С в CDCl₃. Химические сдвиги приведены в шкале δ (м.д.) относительно Ме₄Si как внутреннего стандарта. Масс-спектры регистрировали на хромато-масс-спектрометре «Finnigan MIAT TSQ 7000» при энергии ионизирующих электронов 70 эВ. Контроль за ходом реакций и индивидуальностью полученных соединений осуществляли методом TCX на закрепленном слое силикагеля (Silufol UV254).

Взаимодействие N,N-тиобисаминов с алкенами в присутствии SOHal, (общая методика)

К раствору N,N-тиобисаминов в абсолютном хлористом метилене при –40°С в токе сухого аргона при перемешивании медленно добавляли хлористый (или бромистый) тионил в абсолютном хлористом метилене и после повторного охлаждения реакционной смеси до –40°С медленно прикапывали раствор алкена в абсолютном хлористом метилене. Реакционную смесь перемешивали 1–2 ч, постепенно повышая температуру до комнатной. Раствор пропускали через колонку-фильтр с силикагелем или гидролизовали с последующей экстракцией, растворитель упаривали в вакууме.

Условия проведения реакций и выходы полученных продуктов приведены в табл. 1–4. Данные ЯМР ¹Н-спектроскопии следующих соединений совпадают с опубликованными ранее: **1**,**2** [4], **4a** [8], **5** [4], **12** [23], **19a** [13, 24], **21** [16]. Данные ЯМР ¹Н-спектроскопии соединений **7–10** приведены в табл. 5.

Ди(2-бромциклогексил)сульфид (*dl:мезо* = 5:4) (16). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 23.07, 23.60, 29.71, 30.55, 31.00, 33.40, 34.02 (Скаркаса (*dl* и *мезо*)), 50.63 (CS(*dl*)), 51.76 (CS(*мезо*)), 56.87 (CBr(*dl*)), 58.13(CBr(*мезо*)).

Ди(2-хлор-циклогекс-4-енил)сульфид (*dl* и *мезо*) (3а). Оранжевое маслообразное вещество, R_f 0,78 (элюент – петролейный эфир:этилацетат, 1:3). Спектр ЯМР ¹H (CDCl₃, δ , м.д., *J*/Гц): 2.21 м (1H, CH-каркаса) 2.41 м (1H, CH-каркаса), 2.85 м (2H, CH-каркаса), 3.20 м (HCS), 4.25 м (1H, CHCl), 5.55 м (1H, HC=). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.) 29.88, 30.03 (C⁵), 32.19, 32,59 (C²), 45.67, 46,18 (1H, HCS), 58.51, 59.58 (1H, HCCl), 122.99, 123.12 (1H, HC=), 124.03 124.36(1H, HC=). Найдено (%): С (54,80); H (6,41). С₁₂H₁₆Cl₂S. Вычислено (%): С (54,75); H (6,41).

Ди(2-бром-циклогекс-4-енил)сульфид (*dl* и *мезо*) (**36**). Белое кристаллическое вещество. $T_{\text{пл}} = 69,5^{\circ}\text{C}$. $R_f = 0,87$. (элюент – петролейный эфир:этилацетат, 1:3). Спектр ЯМР ¹H (CDCl₃, δ , м.д., *J*/Гц): 2.25 м (1H, CH-каркаса) 2.57 м (1H, CH-каркаса), 2.93 м (1H, CHкаркаса), 3.08 м (1H, CH-каркаса), 3.28 м (1H, HCS), 4.39 м (1 H, CHCl), 5.57 м (1H, HC=), 5.65 м (1H, HC=). Спектр ЯМР ¹³C (CDCl₃, δ , м.д.): 29.88 (C⁵), 32.07 (C²), 45.68, 45,84 (HCS); 50.02, 50.69 (HCBr) 123.78 (HC=), 122.92, 122.99 (HC=). Найдено (%): C (40,77); H (4,73). C₁₂H₁₆Br₂S. Вычислено (%): C (40,92); H (4,55).

2,6-Дихлор-9-тиабицикло[3.3.1]нонан (4а). Белое кристаллическое вещество. $T_{nn} = 100-103^{\circ}$ С. T_{nn} лит. [25] = 101-102 °С. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Гц): 2.35-2.17 м (6H, CH₂⁻¹ CH₂⁻⁵ CH₂⁻⁸), 2.67 и 2.70 м (2 H, CH₂⁻⁴), 2.86 д.т (HCS, J = 3.2, J = 4.1), 4.72 д.д.д (2 H, CHCl J = 3.6, J = 7.4 J = 10.6). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 28.30 (C⁴, C⁸), 32.60 (C¹, C⁵), 37.30 (CS), 62.50 (CCl).

2,6-Дибром-9-тиабицикло[3.3.1]нонан (46). Светло-желтое кристаллическое вещество. $T_{nn} = 137-138^{\circ}$ С. T_{nn} лит. [25] = 134.5–135.5 °С. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц): 2.25–2.45 м (4 H, CH₂⁴, CH₂⁸), 2.56 м (4H, CH₂¹ CH₂⁵), 2.97 м (HCS), 4.95 м (2 H, CHBr). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 30.50 (C⁴, C⁸), 33.60 (C¹, C⁵), 37.70 (CS), 56.50 (CBr). Найдено (%): С (31,98), H (4,22). C₈H₁₂Br₂S. Вычислено (%): С (32,02), H (4,00).

2,6-Ди-экзо-хлор-8-тиатрицикло[2.2.1.1^{3,5}]гептан (5а). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 35.9 (C⁷); 48.5 (CS); 50.4 (C¹); 56.5 (C⁴); 64.3 (CCl). Масс-спектр, m/z ($I_{\text{отн}}$, %): 198 (5) [M+4]⁺, 196 (24) [M+2]⁺, 194 (36) [M]⁺, 161 (36), 159 (100), 125 (24), 123 (18), 100 (40).

2,6-Ди-экзо-бром-8-тиатрицикло[2.2.1.1^{3,5}]гептан (56). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 37.5 (C⁷); 48.0 (CS); 50.8 (C¹); 54.6 (CBr); 57.0 (C⁴). Масс-спектр, *m/z* ($I_{\text{огн}}$, %): 286 (25) [M+4]⁺, 284 (34) [M+2]⁺, 282 (26) [M]⁺, 205 (97), 203 (100), 171 (13), 169 (12), 124 (48), 123 (44).

Ди(эндо-3-хлорбицикло[2.2.1]гепт-5-ен-экзо-2ил)дисульфид (ба). Соединение в индивидуальном виде не выделялось, его образование зафиксировано по характерным сигналам олефиновых протонов в спектре ЯМР ¹Н (CDCl₃, δ , м.д., *J*/Гц): 6.21 д.д (1H, HC=, *J* = 5.4, *J* = 2.9), 6.37 д.д (1H, HC=, *J* = 5.4, *J* = 3.2) и данным масс-спектрометрии: масс-спектр, *m/z* ($I_{\text{отн}}$, %): 322 (0.7) [M+4]⁺, 320 (2.8) [M+2]⁺, 318 (3.6) [M]⁺, 285 (0.5), 283 (1.8), 159 (10.7), 127 (10.0), 91 (100).

Ди(эндо-3-бромбицикло[2.2.1]гепт-5-ен-экзо-**2-ил)дисульфид (смесь** *dl:мезо*=5:4) (66). *R_f* = 0,70 (элюент петролейный эфир – этилацетат, 3:1). Спектр ЯМР ¹Н (CDCl₃, δ, м.д., *J*/Гц): 1.70 м (2H, *анти*- H⁷ (*dl* и мезо)), 1.85 д (1H, син-H⁷ (мезо), J=9.5), 1.88 д (1H, *син*-Н⁷ (*dl*), *J*=9.4), 2.97 м (1H, H¹ (*dl*)), 3.00 м (1H, $H^{1}(Me30)$, 3.07 T (1H, $H^{4}(Me30)$, J = 3.0), 3.11 T (1H, H⁴ (dl), J=3.0), 3.25 уш.с (2Н, (мезо и dl)), 4.20 т (1Н, HCBr (мезо), J=3.4), 4.30 т (1H, HCBr (dl), J=3.4), 6.22 д.д (2H, H⁵ (*dl* и *мезо*), J = 5.7, J = 2.9), 6.39 д.д (1H, H⁶ (*dl*), *J* = 5.7, *J* = 3.0), 6.40 д.д (1H, H⁶ (*мезо*), *J* = 5.7, *J* = 3.0). Спектр ЯМР¹³С (CDCl₃, δ, м.д.): 45.6 (C⁷), 48.5, 48.6 (C⁴), 49.9 (C¹), 54.1, 54.5 (CS), 59.2, 59.5(CBr), 136.7, 136.8, 136.9, 137.0 (С=С). Масс-спектр, т/г $(I_{orru}, \%)$: 410 (6) $[M+4]^+$, 408 (10) $[M+2]^+$, 406 (6) $[M]^+$, 329 (34), 327 (30), 205 (28), 203 (28), 173 (16), 171 (20), 124 (28), 123 (84), 91 (100).

Смесь N-(эндо-3-бромбицикло[2.2.1]гепт-5-енэкзо-2-илтио)пиперидина (7) и N-(экзо-3-бромбицикло[2.2.1]гепт-5-ен-эндо-2-илтио)пиперидина (8). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.) соединение 7:

Спектры ЯМР ¹Н продуктов 7-10

Продукт	HCHal	HCS	H(1)	H(4)	H(5)	H(6)	анти-Н(7)	син-Н(7)	NR ₂
7 a	$\begin{array}{c} 4.10 \text{ T} \\ (J = 3.4) \end{array}$	3.18 ⁶ уш.с	2.80 ym.c	3.00 ^в	6.19 д.д (J = 5.7, J = 2.9)	6.37 д.д (J = 5.7, J = 3.1)	$1.67 \ {}_{ m A} (J = 9.3)$	1.62 ^r	1.40 M (2H), 1.60 [°] M (4H)
Sa	3.75 T (J = 3.1)	3.60 T (J = 2.5)	3.00 ^г	3.18 ⁶ M	6.10 д.д $(J = 5.7, J = 3.2)$	6.24 д.д ($J = 5.7$, J = 2.7)	$\begin{array}{c} 2.07 \ \mu \ (J = 9.0) \end{array}$	1.76 д.кв $(J = 9.0, J = 1.9)$	3.00° M (4H, H ₂ CN)
9 ^a	4.07 T (J = 3.4)	3.02 [#]	2.80 м	3.18 м	$(6.19 \ \text{д.} \Pi \ (J = 5.7), J = 2.7)$	6.37 д.д. $(J = 5.7, J = 3.0)$	$1.67 \ { m h} (J = 9.3)$	1.61 μ , μ , μ ($J = 9.3$, $J = 2.5$, $J = 1.9$)	3.00 ^л м (4H, NCH ₂) 3.67 м (4H, OCH ₂)
10 ^a	3.75 T (J = 3.1)	3.59 T (J = 2.7)	3.02 ^д	3.16 м	$(6.12 \ \text{д.} \Pi \ (J = 5.7, J = 3.2))$	6.22 д.д. $(J = 5.7, J = 2.7)$	2.08 μ ($J = 9.2$)	1.78 д.д.д. (J = 9.2, J = 2.1, J = 1.8)	
7°	(J = 3.4)	3.16 T (J = 3.0)	2.68 уш.с	×	6.15 ³ M		$1.55 \ {}_{ m II} (J = 9.2)$	1.40 д.кв $(J = 9.2, J = 2.1)$	1.21 m (2H), 1.47 m (4H)
Sc	3.81 T (J = 3.1)	3.63 T (J = 2.3)	2.75 уш.с	×	5.72 д.д. (J = 5.2, J = 3.2)	6.15 ³	$2.05 \ {}_{ m A} (J = 9.1)$	1.58 д.кв $(J = 9.1, J = 1.4)$	3.01 м (4Н, Н ₂ СN)
9 ⁴	4.00 T (J = 3.3)	2.99 T (J = 2.7)	2.69 уш.с	3.02 ^к уш.с	6.13 ^{π} д.д (<i>J</i> = 5.5, <i>J</i> = 2.6)	6.24 д.д $(J = 5.5, J = 3.1)$	$\begin{array}{c} 1.56 \ \ \mu \ (J = 9.3) \end{array}$	1.49 д.д (J = 9.3, J = 1.6)	2.91 m (4H, NCH ₂) 3.55 ^m
10 ^{^H}	3.69 T (J = 2.9)	3.52 ^M	2.83 уш.с	3.02 ^к уш.с	5.93 д.д $(J = 5.3, J = 3.1)$	6.13 ¹¹	2.01 μ (<i>J</i> = 9.1)	1.66 д.д (J = 9.0, J = 1.4)	T (4H, OCH ₂ , $J = 4.5$)
^а Раствори сигналы лежат 1 ^м сигналы перек	тель CDCl ₃ ; ⁶ сиі з области 2.94–3.07 срываются.	гналы перекры 7 м.д. и перекрын	ІВАЮТСЯ; ^в с) ваются с сигн	игналы перекј налом NCH ₂ -гру	зываются; ^г сигнали лпы; ^з сигналы перек	ы перекрываются; ^д рываются; ^и растворите	сигналы перекры ель С ₆ D ₆ ; ^к сигналь	іваются; ^е растворитель и перекрываются; ^л сигна	$CDCl_3: C_6D_6 = 3:2; **$ AII51 Перекрываются;

22.7, 26.7 (СН₂ пиперидина), 45.8 (С⁷), 48.6, 49.3 (С⁴ и С¹), 52.9 (СS), 55.8 (СВг), 58.6 (NCH₂), 135.7, 137.0 (С=С). Спектр ЯМР ¹³С (СDСl₃, δ , м.д.) соединение **8**: 23.1, 27.3 (СН₂ пиперидина), 47.4 (С⁷), 48.1, 52.6 (С⁴ и С¹), 54.1 (СS), 57.2 (СВг), 58.5 (NCH₂), 134.8, 136.9 (С=С). Масс-спектр, *m/z* ($I_{\text{отн}}$, %), соединение 7: 289 (24) [M+2]⁺, 287 (24) [M]⁺, 223 (14). 221 (14), 208 (100), 142 (33), 123 (68), 90 (50). Масс-спектр, *m/z* ($I_{\text{отн}}$, %), соединение **8**: 289 (12) [M+2]⁺, 287 (12) [M]⁺, 223 (24). 221 (24), 208 (100), 142 (38), 122 (44), 90 (34).

8-Хлорбицикло[4.2.0]окта-2,4-диен-7сульфенхлорид (14). Зафиксирован в смеси с тиацикланом 16 методом ЯМР в виде двух изомеров. Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц) основного изомера: 3.62 д.д.д.д (1H, HC^1 или HC^6 , J = 8.7, J = 7.6, *J* = 3.1, *J* = 1.1), 4.03 м (1H, HC¹ или HC⁶), 4.72 т (1H, HCS, *J* = 4.5), 5.60 д.д.д (1H, HC=, *J* = 11.0, *J* = 4.4, *J* = 1.8), 5.77 д.д (1H, HCCl, *J* = 3.5, *J* = 0.8), 5.97 д.д.д (1H, HC=, J=11.0, J=8.6, J=1.0), 6.43 т (1H, HC=, J = 8.4), 6.56 д.д (1H, HC=, J = 8.8, J = 8.0). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., J/Γ ц) минорного изомера: 3.55 (1H, HC¹ или HC⁶, перекрывается с сигналом основного изомера), 3.95 м (1H, HC¹ или HC⁶), 4.92 т.д (1H, HCS, J = 5.3, J = 1.0), 5.45 д (1H, HCCl, J = 4.1), 5.79 д.д.д (1H, HC=, J = 11.2, J = 4.4, J = 1.9), 6.05 д.д.д (1Н, НС=, J = 11.5, J = 8.1, J = 1.7), 6.33 д.д.д (1H, HC=, *J* = 8.9, *J* = 7.3, *J* = 0.8), 6.43 д.д.д (1H, HC=, J = 9.0, J = 8.3, J = 1.1). Cnektp SMP ¹³C (CDCl₃, δ, м.д.) основного изомера: 42.3, 43.6 (C¹ и C⁶), 59.0 (CS), 68.6 (CCl), 127.6, 128,6, 130.9, 135.2 (C=C). Спектр ЯМР 13 С (CDCl₂, δ , м.д.) минорного изомера: 41.7, 44.8 (С¹ и С⁶), 67.4 (ССІ), 129.1, 130.7, 136.4 (C=C), сигнал CS и сигнал одного углерода при двойной связи перекрываются с сигналами соединений 14 (основной изомер) и 16. Масс-спектр, *m/z* (*I*_{отн}, %): 210 (1.0) [M+4]⁺, 208 (5.7) [M+2]⁺, 206 (8.1) [M]⁺, 173 (13.3), 171 (33.2), 135 (38.9), 125 (14.4), 91 (100).

2,9-Дихлор-8-тиабицикло[5.1.1]нона-3,5-диен (**16**). Выделен в смеси с соединением **19а**. Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц) соединения **16**: 3.95 м (2H), 4.39 д.д.д (1H, J = 4.8, J = 1.2, J = 0.9) (сигналы HCS и HCCl), 5.06 д.кв (1H, HC²Cl, J = 4.9, J = 1.8), 5.76 д.д (1H, HC³ или HC⁶, J = 10.5, J = 2), 6.02 д.д (1H, HC³ или HC⁶, J = 10.5, J = 4.9), 6.43 д.д.д (1H, HC⁴ или HC⁵, J = 10.4, J = 6.5, J = 2.0), 6.32 д.д.д (1H, HC⁴ или HC⁵, J = 10.5, J = 6.7, J = 1.2).). Масс-спектр, m/z ($I_{\text{огн}}$, %): 210 (2.2) [M+4]⁺, 208 (13.0) [M+2]⁺, 206 (19.1) [M]⁺, 173 (37.6), 171 (100), 135 (76.1), 97 (31.0), 91 (63.2)

2,6-Дихлор-9-тиабицикло[3.3.1]нонадиен-3,7 (19а). ЯМР ¹Н (CDCl₃, δ, м.д., J/Гц):, 3.50 т (2Н, HCS,

J = 5.7), 5.15 м (2H, HCCl), 5.92 д (2H, HC³, HC⁷, J = 10.9), 6.25 д.д.д (2H, HC⁴, HC⁸, J = 10.9, J = 6.0, J = 1.8). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 35.91 (CS), 58.89 (CCl), 127.92 (C³, C⁷),130.79 (C⁴, C⁸). Масс-спектр, m/z ($I_{\text{отн}}$, %): 210 (2.5) [M+4]⁺, 208 (13.8) [M+2]⁺, 206 (19.9) [M]⁺, 173 (28.6), 171 (75.1), 135 (79.7), 97 (100), 91 (59.4).

2,6-Дибром-9-тиабицикло[3.3.1]нонадиен-3,7 (**196**). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., *J*/Гц): 3.53 т (2H, HCS, *J* =5.7), 5.28 м (2H, HCBr), 6.07 д.д (2H, HC³, HC⁷, *J* = 10.5, *J* = 1.1), 6.27 д.д.д (2H, HC⁴, HC⁸, *J* = 10.5, *J* = 6.1, *J* = 1.8). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 35.90 (CS), 49.61 (CBr), 129.01 (C³, C⁷), 131.01 (C⁴, C⁸). Масс-спектр, *m/z* (*I*_{отн}, %): 298 (4.6) [M+4]⁺, 296 (9.0) [M+2]⁺, 294 (4.6) [M]⁺, 217 (51.8), 215 (52.2), 136 (57.3), 135 (100), 97 (33.0), 91 (64.1).

Транс-7,8-дибромбицикло[4.2.0]окта-2,4-диен (**20**). Спектр ЯМР ¹Н (CDCl₃, δ , м.д., *J*/Гц): 3.20 д.д.д.д. (1H, HC¹, $J_{1,6} = 10.7$, $J_{1,8} = 8.4$, $J_{1,2} = 5.9$, J = 1.5), 3.66 м (1H, HC⁶), 4.65 т.д (1H, HC⁸, $J_{8,1} \approx J_{8,7} = 8.4$, $J_{8,6} = 1.2$), 4.94 т ((1H, HC⁷, $J_{7,6} \approx J_{7,8} = 8.4$,), 5.66–5.73 м (2H, HC², HC⁵), 5.91 д.д. (1H, HC³, $J_{3,2} = 9.3$, $J_{3,4} = 5.6$), 6.05 д.д.д.д. (1H, HC⁴, $J_{4,5} = 10.3$, $J_{4,3} = 5.6$, $J_{4,6} = 2.0$, J = 1.0). Спектр ЯМР ¹Н (C₆D₆, δ , м.д., J/Гц): 2.66 д.д.д. (1H, HC¹, J = 11.0, J = 8.4, J = 5.7), 2.94 м (1H, HC⁶), 4.50 т ((1H, HC⁷, J = 8.5), 4.5 т.д. (1H, HC⁸, J = 8.4, J = 1.0), 5.32 д.д.д. (1H, HC³, J = 9.7, J = 5.6, J = 1.0), 5.49–5.56 м (2H, HC², HC⁵), 5.70 д.д.д. (1H, HC⁴, J = 10.2, J = 5.9, J = 2.0). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 42.64, 40.36 (C1, C6), 55.17, 58.40 (CBr), 122.26, 123.79, 124.46, 125.58 (C=C). Масс-спектр, m/z ($I_{0,rq}$, %): 266 (0.4) [M+4]⁺, 264 (0.9) [M+2]⁺, 262 (0.5) [M]⁺, 185 (7.5), 183 (7.4), 104 (40.3), 103 (19.1), 78 (100), 77 (16.0). Найдено (%): С 36.20; Н 3.25. C₈H₈Br₂. Вычислено (%): С 36.40; Н 3.05.

4,5,7,8-Тетрабромбицикло[4.2.0]окта-2-ен (21). Спектр ЯМР ¹H (CDCl₃, δ , м.д., *J*/Гц): 3.27 т.д.д.д (1H, HC⁶, $J_{6,1} = J_{6,7} = 9.0$, $J_{6,5} = 2.6$, J = 1.6, J = 0.9), 3.48 м (1H, HC¹), 4.66 д.д (1H, HC⁸, $J_{8,1} = 8.5$, $J_{8,7} = 8.3$), 4.85 д.д (1H, HC⁵, $J_{5,6} = 2.6$, J = 1.3), 5.09 м (1H, HC⁴), 5.15 д.д.д (1H, HC⁷, $J_{7,6} = 9.0$, $J_{7,8} = 8.3$, J = 1.0), 6.05 д.д (1H, HC², $J_{2,3} = 10.3$, $J_{2,1} = 3.8$), 6.16 д.д.т (1H, HC³, $J_{3,2} = 10.3$, $J_{3,4} = 5.0$, J = 1.3). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 36.28, 43.67, 44.06, 48 10, 48 80, 49.87 (C¹, C⁴, C⁵, C⁶, C⁷, C⁸), 125.48, 128.24 (C=C). Масс-спектр, m/z ($I_{0\text{ rm}}$, %): 347 (3.6) [M+6-Br]⁺, 345 (11.3) [M+4-Br]⁺, 343 (11.9) [M+2-Br]⁺, 341 (3.7) [M-Br]⁺, 265 (37.2), 263 (71.9), 261 (39.3), 184 (60.2), 182 (59.8), 159 (32.8), 157 (35.5), 104 (57.5), 103 (55.4), 78 (100), 77 (83.5).

Смесь ди((Е)-1-хлоргепт-1-ен-2-ил)сульфида (22a) и ((Е)-1-хлоргепт-1-ен-2-ил)((Е)-2-хлор-

гепт-1-енил)сульфида (23а). В результате реакции 0,53 г (2,6 ммоль) N, N-тиобисморфолина, 0,62 г (5,2 ммоль) хлористого тионила и 0,50 г (5,2 ммоль) гептина-1 после хроматографирования на колонке (этилацетат-петролейный эфир 1:10) получили 0,40 г (52%) смеси 22а и 23а (22а:23а = 2:1) в виде желтой жидкости. $R_f = 0.94$. Спектр ЯМР ¹H (CDCl₃, δ, м.д., Ј/Гц) смеси соединений 22а и 23а*: 0.94 м (6H, CH₂ (изомер **22a**) + 6H, CH₂ (изомер **23a**)), 1.35 м (8H, 4H⁴, 4H⁵ (изомер **22a**) + 8H, 4H⁴, 4H⁵ (изомер **23а**)), 1.50–1.65 м (4H, 4H³ (изомер **22а**) + 4H, 4H³ (изомер 23а)) 2.35 т (4H, CH₂CS (изомер 22а), J = 7.6), 2.41 т (2H, CH₂CS (изомер **23a**), *J* = 7.6), 2.56 т (2H, CH₂CCl, (изомер **23a**), *J* = 7.4), 5.98 с (1H, HCS (изомер 23а)), 6.11 с (1H, HCCl (изомер 23а)), 6.23 с (2H, HCCl (изомер 22а)). Спектр ЯМР⁻¹³С (CDCl₂, δ, м.д.): 14.01 (CH₃ (изомеры **22а**, **23а**)), 22.45 (С⁶ (изомеры **22а**, **23а**)), 26.79 (С⁵ (радикал R–CCl= изомера **23а**)), 26.87 (С⁵ (радикал R–CS= изомеров **22а**, **23а**)), 30.76 (С⁴ (радикал R-CCl= изомера **23a**)), 31.10 (С⁴ (радикал R-CS= изомеров 22a, 23a)), 31.20 (<u>CH</u>₂CS (изомер 22а)), 31.69 (<u>CH₂CS</u> (изомер 23а)), 34.84 (CH₂CCl (изомер 23а)), 113.87 (CHS, (изомер 23а)), 117.34 (CHCl, (изомер 23а)), 118.61 (CHCl, (изомер 22a)), 136.26 (=C-S, (изомер 22a)), 137.42 (RCS, (изомер 23а)), 139.77 (RCCl, (изомер 23а)). Найдено (%): С 56.75; Н 8.26. С₁₆Н₁₂Сl₂S. Вычислено (%): С 56.93; H 8.13. Масс-спектр, *m/z* (*I*_{отн}, %): 296 (12.9) [M]⁺, 261 (46.2) [M+2-Cl]⁺, 260 (29.0) [M+1-Cl]⁺, 259 (100) [M-Cl]⁺, 223 (6.4) [M-2Cl], 203 (34.4), 95 (61.3), 71 (79.6). Масс-спектр, *m/z* (*I*_{отн}, %): 296 (9.7) [M]⁺, 259 (46.2) [M-Cl]⁺, 223 (7.5) [M-2Cl]⁺, 203 (215), 95 (38.7), 71 (100).

Смесь ди((Е)-2-хлор-1-фенилэтинил)сульфида (22б) и ((Е)-2-хлор-1-фенилэтинил)((Е)-2-хлор-2фенилэтинил)сульфида (23б). В результате реакции 0,51 г (2,5 ммоль) N,N-тиобисморфолина, 0,58 г (4,9 ммоль) хлористого тионила и 0,50 г (4,9 ммоль) фенилацетилена после хроматографирования на колонке (этилацетат-петролейный эфир 1:10) получили 0,70 г (93%) смеси 226 и 236 (226: 236 = 1:1) в виде светло-коричневой жидкости. $R_f = 0,89$. Спектр ЯМР ¹H (CDCl₃, δ , м.д., J/Γ ц) смеси соединений **226** и 236: 6.33 с (1H, HCS (соединение 236)); 6.55 с (1H, HCCl (соединение 23б)), 6.56 м (2H, HCCl (соединение **226**)) 7.22–7.54 (24Н аром). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.): 116.66 (CS соединения **236**), 118.72, 120.98 (СНСІ (соединений 226 и 236)), 122.03, 128.25, 128.42, 128.50, 128.66, 128.72, 128.81, 128.88, 129.35, 129.46, 129.75, 129.90 (С аром), 134.55, 134.66, 135.91, 136.04, 136.12, 136.66 (C²Cl (соединение **236**), С аром. (C^1), C^2S (соединений **226** и **236**)). Найдено (%): С (62,47); Н (4,03). С₁₆Н₁₂Сl₂S. Вычислено (%): С (65,52); Н (3,91). В хромато-масс-спектре присутствуют четыре пика. Основные соединения: массспектр, m/z (I_{0TH} , %): 273 (26.9) [M+2-Cl]⁺, 272 (18.3) [M+1-Cl]⁺, 271 (79.6) [M-Cl]⁺, 236 (100) [M-2Cl], 203 (5.4) [M-2Cl-SH), 134 (23.7), 121 (18.3), 102 (82.8); масс-спектр, *m/z* (*I*_{отн}, %): 308 (3.9) [M+2]⁺, 307 (2.2) $[M+1]^+$, 306 (4.3) $[M]^+$, 273 (16.1) $[M+2-C1]^+$, 272 (7.5) [M+1-Cl]⁺, 271 (41.9) [M-Cl]⁺, 236 (26.9) [M-2Cl], 203 (3.2) [М-2СІ-SH), 134 (18.3), 121 (100), 102 (43.0). Минорные продукты: масс-спектр, *m/z* (*I*_{отн}, %): 273 (8.6) $[M+2-C1]^+$, 272 (7.5) $[M+1-C1]^+$, 271 (25.8) $[M-C1]^+$, 236 (24.7) [M-2Cl], 203 (4.3) [M-2Cl-SH), 134 (46.2), 121 (100), 102 (60.2). масс-спектр, m/z ($I_{\text{отн}}$, %): 308 (29.0) $[M+2]^+$, 307 (11.8) $[M+1]^+$, 306 (36.6) $[M]^+$, 271 (100) [M-Cl]⁺, 236 (73.1) [M-2Cl], 203 (18.3) [M-2Cl-SH₂), 134 (93.5), 121 (62.4), 102 (68.8).

Реакция норборнадиена с морфолиносульфенбромидом. К раствору 0,38г (1,6 ммоль) дитиобисморфолина в 10 мл СНСІ₂ добавляли раствор 0,26 г (1,6 ммоль) брома в 8 мл СНСІ₂ при температуре -20°С в токе аргона. Перемешивали при этой температуре 10 мин, затем повысили температуру до 0°С еще 10 мин. Реакционную смесь охладили до -25°С и добавили раствор 0,32 г (3,5 ммоль) норборнадиена в 5 мл CHCl₃. Перемешивали при этой температуре 10 мин. Отогрели до комнатной температуры, растворитель упарили. Получили 0,93 г (98%) эндо-3-бромбицикло[2.2.1]гепт-5-ен-экзо-2смеси илсульфенморфолида (9) и экзо-3-бромбицикло[2.2.1] гепт-5-ен-эндо-2-илсульфенморфолида (10) (9:10 = 1:1) в виде бесцветной жидкости с резким запахом. R_f = 0,69 (элюент – петролейный эфир:этилацетат, 1:3). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.) соединение 9: 45.8 (C⁷), 48.5, 49.3 (C⁴ и C¹), 53.4 (CS), 55.2 (CBr), 57.1 (NCH₂), 67.6 (OCH₂), 135.9, 136.9 (С=С). Спектр ЯМР ¹³С (CDCl₃, δ, м.д.) соединение **10**: 47.3 (С'), 48.0, 52.5 (C⁴ и C¹), 54.8 (CS), 56.7 (CBr), 57.0 (NCH₂), 67.6 (ОСН₂), 135.1, 136.6 (С=С). Масс-спектр, *m/z* $(I_{\text{отн}}, \%)$, соединение **9**: 291 (16) $[M+2]^+$, 289 (16) $[M]^+$, 225(15), 223 (15), 210 (100), 123 (62), 91 (59). Масс-спектр, *m/z* (*I*_{отн}, %), соединение **10**: 291 (11) [M+2]⁺, 289 (11) [M]⁺, 225(22), 223 (22), 210 (100), 123 (52), 91 (39). Найдено (%): С (45,39); Н (5,13); N (4,70). С₁₁Н₁₆BrNOS. Вычислено (%): С (45,52); Н (5,22); N (4,83).

^{*}Интегральные интенсивности указаны индивидуально для соединений 22а и 23а.

Взаимодействие смеси соединений 9 и 10 с тионилбромидом. К раствору 0,19 г (0,655 ммоль) смеси сульфенамидов 9 и 10 (1:1) в 15 мл хлороформа добавили по каплям раствор 0,68 г (0,37 ммоль) SOBr₂ в 5 мл хлороформа при –40°С в токе аргона. Перемешивали при этой температуре 20 мин, медленно отогревали до комнатной температуры и перемешивали еще 1 ч. Реакционную смесь пропустили через колонкуфильтр с силикагелем (h = 5 см). Растворитель упарили, получили 0,13 г смеси 2,6-ди-экзо-бром-8-тиатрицикло[2.2.1.1^{3,5}]гептана (**56**) (39%) и ди(эндо-3бромбицикло[2.2.1]гепт-5-ен-экзо-2-ил)дисульфида (смесь *dl:мезо* = 5:4) (**66**) (43%).

Взаимодействие смеси соединений 9 и 10 с тионилхлоридом. К раствору 0,47 г (1,62 ммоль) смеси сульфенамидов 9 и 10 (1:1) в 20 мл хлороформа добавляли по каплям раствор 0,3 г (2,5 ммоль) SOCl₂ в 10 мл хлороформа при температуре -40°С в токе аргона. Перемешивали при этой температуре 20 мин, медленно отогревали до комнатной температуры и перемешивали 24 ч. Реакционную смесь пропустили через колонку-фильтр с силикагелем (h = 5см). Растворитель упарили, получили 0,26 г смеси 2,6-ди-экзохлор-8-тиа-трицикло[2.2.1.1^{3,5}]гептана (5а) (16%), 2-экзо-бром-6-экзо-хлор-8-тиа-трицикло[2.2.1.1^{3,5}] гептана (5в) (47%) и ди(эндо-3-бромбицикло[2.2.1] гепт-5-ен-экзо-2-ил)дисульфида (66) (8%). После дополнительной хроматографической очистки (элюент – петролейный эфир:этилацетат, 10:1) выделили 0,18г смеси 2,6-ди-экзо-хлор-8-тиа-трицикло[2.2.1.1^{3,5}]гептана (5а) (14%), 2-экзо-бром-6-*экзо*-хлор-8-тиа-трицикло[2.2.1.1^{3,5}]гептана (**5**B) (35%). Спектр ЯМР ¹Н соединения **5**в (CDCl₂, δ, м.д.,

J/Гц): 2.15 д.кв (1H, HC⁷, $J_{7,7} = 12.3$, J = 1.1), 2.22 д.кв (1H, HC⁷, $J_{7,7} = 12.3$, J = 1.1), 3.27 т.д (1H, HCS, J = 4.2, J = 1.1), 3.29 уш.с (1 H, HC¹) 3.42 т.д (2H, HCS, J = 4.4, J = 1.1), 4.02 м (1H, HC⁴), 4.66 с (1H, HCCI), 4.71 с (1H, HCBr). Спектр ЯМР ¹³С (CDCl₃, δ , м.д.): 36.71 (C⁷); 48.23, 48.31 (CS); 50.57 (C¹); 54.73 (CBr); 56.76 (C⁴), 64.27 (CCI). Масс-спектр, m/z (I_{0TH} , %), соединение **5в**: 242 (7.9) [M+4]⁺, 240 (24) [M+2]⁺, 238 (21.7) [M]⁺, 205 (4.1), 203 (3.9), 161 (36.6), 159 (100), 125 (26.9), 123 (36.1), 97 (17.3), 79 (22.8), 65 (26.7).

Взаимодействие смеси соединений 5а и 5в с тионилхлоридом. Раствор 0,18 г смеси тиацикланов 5а и 5в (1,0:2,9) (соответственно 0,04 г 5а и 0,14 г 5в) и 0,3 г SOCl₂ в 10 мл хлороформа перемешивали при комнатной температуре в течение 48 ч. Реакционную смесь пропустили через колонку-фильтр с силикагелем (h = 5см). Растворитель упарили, получили 0,14 г 2,6-ди-экзо-хлор-8-тиа-трицикло[2.2.1.1^{3,5}] гептана (5а) (выход реакции превращения 5в в 5а составил 88%).

Взаимодействие циклооктатетраена с бромом. К раствору 0,4г (3,8 ммоль) цилооктатетраена в 15 мл CHCl₃ при -30° C добавили раствор 0,6 г (3,8 ммоль) брома в 15 мл CHCl₃. Реакционную смесь перемешивали 10 мин, затем отогревали до комнатной температуры и перемешивали еще 1-2 ч. Затем промывали раствором сульфита натрия до исчезновения окраски брома. Органический слой отделяли, водную фазу троекратно экстрагировали хлороформом, органические вытяжки объединяли и сушили сульфатом натрия. Раствор пропускали через колонку-фильтр. Растворитель удаляли в вакууме. Получили 0,936 г (92%) дибромида **20**.

Работа выполнена при финансовой поддержке РФФИ (проект № 11-03-00707-а) и Президиума Российской Академии Наук (программа фундаментальных исследований «Разработка методов получения химических веществ и создание новых материалов»).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Машковский М.Д.* Лекарственные средства. Т 1. Харьков, 1998. 560 с.
- 2. *Tolstikov G.A.* // Sulfur Reports. 1983. **3**. P. 39.
- Зык Н.В., Вацадзе С.З., Белоглазкина Е.К., Дубинская Ю.А., Титанюк И.Д., Зефиров Н.С. // Докл. АН. 1997. 357. С. 209.
- Зык Н.В., Белоглазкина Е.К., Вацадзе С.З., Титанюк И.Д., Дубинская Ю.А. // ЖОрХ. 2000. 36. С. 828.
- 5. Зык Н.В., Белоглазкина Е.К., Вацадзе С.З., Титанюк И.Д. // Изв. АН. Сер. хим. 1998. С. 2516.
- 6. Зык Н.В., Гаврилова А.Ю., Мухина О.А., Бондаренко О.Б., Зефиров Н.С. // Изв. АН. Сер. хим. 2008. С. 2521.
- 7. Бондаренко О.Б., Гаврилова А.Ю., Тиханушкина В.Н., Зык Н.В. // Изв. АН. Сер. хим. 2005. С. 2070.

8. Corey E.J., Block E. // J. Org. Chem. 1966. 31. P. 1663.

- 9. Lautenschlaeger F. // J.Org.Chem. 1966. 31. P. 1679.
- Eberson L., Nyberg K., Finkelstein M., Petersen R.C., Ross S.D., Uebel J.J. // J. Org. Chem. 1967. 32. P. 16.
- 11. Connors G., Wu X., Fry A.J. // Organic Letters. 2007. 9. P. 1671.
- 12. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. М., 2006. 439 с.
- 13. Lautenschlaeger F. // J. Org. Chem. 1968. 33. P. 2627.
- Georgian V., Georgian L., Robertson A.V. // Tetrahedron. 1968. 19. P. 1219.
- Huisgen R., Boche G. // Tetrahedron Letters. 1965. 6. P. 1769.
- Boche G., Huisgen R. // Tetrahedron Letters. 1965. 6.
 P. 1775.

- 17. Barton T.J., Zika R.G. // J. Org. Chem. 1970. 35. P. 1729.
- 18. Зык Н.В., Белоглазкина Е.К., Белова М.А., Дубинина Н.С. // Усп. хим. 2003. **72**. С. 864.
- 19. Mueller W.H., Butler P.E. // J. Org. Chem. 1968. 33. P. 2111.
- 20. Дениско О.В. Дис. канд. хим. наук. М., 1991. 149 с.
- 21. Зык Н.В., Белоглазкина Е.К., Белова М.А., Дубинина Н.С., Клева И.А. // Изв. АН. Сер. хим. 2003. С. 1348.
- 22. Зык Н.В., Белоглазкина Е.К., Белова М.А., Зефиров Н.С.

// Изв. АН. Сер. хим. 2000. С. 1874.

- Зык Н.В., Гаврилова А.Ю., Нечаев М.А., Мухина О.А., Бондаренко О.Б., Зефиров Н.С. // Изв. АН. Сер. хим. 2009. С. 2435.
- 24. Blanc P.Y., Diehl P., Fritz H., Schläpfer P. // Experienta. 1967. 23. P. 896.
- 25. Weil E.D., Smith K.J., Gruber R.J. // J. Org. Chem. 1966. 31. P. 1669.

Поступила в редакцию 15.04.14

INTERACTION OF UNSATURATED COMPOUNDS WITH THE THIOBISAMINE-SOHAL, SYSTEM

N.V. Zyk, A.Yu. Gavrilova, M.A. Nechaev, O.B. Bondarenko, N.S. Zefirov

(Division of Organic Chemistry)

Reactions of unsaturated compounds with the thiobisamine-SOHal₂ (Hal = Cl, Br) system were proposed as a convenient route to di(β -haloalkyl)sulfides. With alkenes, dienes and alkynes as examples, the regio- and stereoselectivity of the reactions were studied.

Key words: Thiobisamines, thionyl halogenides, alkenes, dienes, alkynes, sulfenylation.

Сведения об авторах: Зефиров Николай Серафимович – профессор, зав. кафедрой органической химии химического факультета МГУ, докт. хим. наук, академик (zefirov@org.chem.msu.ru); Зык Николай Васильевич – профессор кафедры органической химии химического факультета МГУ, докт. хим. наук (zyk@ org.chem.msu.ru); Бондаренко Оксана Борисовна – ст. науч. сотр. кафедры органической химии химического факультета МГУ, канд. хим. наук (bondarenko@org.chem.msu.ru); Гаврилова Анна Юрьевна – ст. науч. сотр. кафедры органической химии химического факультета МГУ, канд. хим. наук (bondarenko@org.chem.msu.ru); Гаврилова Анна Юрьевна – ст. науч. сотр. кафедры органической химии химического факультета МГУ, канд. хим. наук (bondarenko@org.chem.msu.ru); Нечаев Максим Андреевич – мл. науч. сотр. кафедры органической химии химического факультета МГУ (maxximus@umail.ru).