УДК 546.571'226'221-386:539.26

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА α-Ag₈S₃SO₄

Т.А. Шестимерова, А.С. Митяев, Д.И. Давлятшин, А.В. Шевельков

(кафедра неорганической химии; e-mail: shestim@inorg.chem.msu.ru)

Кристаллическая структура сульфидо-сульфата серебра α -Ag₈S₃SO₄ определена по данным порошковой рентгеновской дифракции. Вещество кристаллизуется в тетрагональной сингонии и пространственной группе P-4 с параметрами элементарной ячейки a = 7,2032(4)Å, c = 5,1043(5) Å, Z = 1, $R_f = 5,55\%$, $\chi^2 = 3,45$. В структуре соединения слои, образованные связанными между собой через вершины тригональными призмами Ag₆S, соединяются дополнительными атомами серы в трехмерный каркас. В пустотах каркаса расположены искаженные тетраэдрические анионы SO₄²⁻, симметрия которых (D_{2d}) подтверждена данными ИК-спектроскопии.

Ключевые слова: серебро, сера, сульфат анион, трехмерный каркас.

Процессы растворения солей серебра в концентрированных растворах нитрата или фторида серебра [1-5] изучались достаточно подробно. В ходе этих исследований была обнаружена группа соединений серебра, основу структуры которых составляет положительно заряженный каркас из атомов серебра и неметалла, а полости каркаса занимают различные оксоанионы. Эти соединения описываются общей формулой [Ag_nX_y]A_y, в которой Х является элементом 16-й или 17-й группы, А – некоторый анион, а n > x. Большинство известных комплексов имеют галогенсодержащие каркасы, например $[Ag_2X]NO_3$ (X = Cl, Br, I) [6-8] и [Ag₂I]F·H₂O [2]. Определено также строение двух соединений $[Ag_3S]NO_3$ [9] и α,β - $[Ag_4Te]$ NO₃ [10, 11], где в состав каркаса помимо атомов серебра входят атомы халькогена. Данный класс соединений можно дополнить комплексами, получаемыми методами твердофазного синтеза, например $[Ag_4Te]SO_4$ [12], $[Ag_5Y]PO_4$ (Y = Se, Те) [13]. Все эти вещества имеют разнообразное и часто уникальное кристаллическое строение, но практически для всех характерны высокие координационные числа атомов неметалла в каркасе и наличие близких (~3 Å) контактов серебро-серебро. В ходе поиска новых соединений, которые могли бы быть отнесены к данному классу, мы обратили внимание на ряд фаз, для которых определен состав и некоторые свойства, но не установлена кристаллическая структура. В частности, при поиске новых фоточувствительных материалов и ионных проводников было установлено, что в системе Ag-S-O

образуются четыре различных сульфидо-сульфата: α - и β -Ag₈S₃SO₄, а также α - и β -Ag₆S₂SO₄ [14]. Проанализировав данные по соединениям с каркасами серебро-неметалл и оксоанионами в пустотах, мы предположили, что соединения α , β -Ag₈S₃SO₄ и α , β -Ag₆S₂SO₄ могут иметь аналогичный тип строения. В данной работе описан синтез и кристаллическое строение α -Ag₈S₃SO₄.

Экспериментальная часть

Синтез. В качестве исходных реагентов использовали нитрат серебра («ч.») и тиосульфат натрия («ч.д.а.»). К водному раствору нитрата серебра постепенно добавляли водный раствор тиосульфата натрия (конечные концентрации 0,1 и 0,01 М, объем раствора 100 мл) [14]. Маточный раствор с осадком выдерживали в течение трех дней в следующем режиме: 6 ч при перемешивании и температуре 80°С, 18 ч при комнатной температуре без перемешивания, объем раствора поддерживали постоянным. Перед отделением осадка раствор нагревали, осадок отфильтровали на воронке Бюхнера, промывали этиловым спиртом и высушивали при комнатной температуре. Для отделения примеси Ag₂SO₄ к образцу добавляли горячий раствор нитрата серебра и отфильтровывали на воронке Бюхнера, затем промывали спиртом и высушивали при комнатной температуре.

Рентгеновская дифракция. Рентгенофазовый анализ образцов и съемку дифрактограммы для решения и уточнения кристаллической структуры проводили на дифрактометре *«STADI-P»* (Cu-K_{α1}-

Т	а	б	л	и	п	а	1
	u	~	21		-4	u	-

Данные съемки и уточнения кристаллической структуры $[Ag_8S_3]SO_4$

Лифрактометер	STADLP (Stoe)		
Дифрактометер			
Температура съемки, К	293		
Длина волны, λ, Å	Cu-K _{α1} ; 1,54051		
Диапазон 20, град.	7–100		
С шагом 20, град.	0,01		
Пространственная группа	P-4		
	a = 7,2032(4)		
Параметры ЭЯ, А	c = 5,1043(5)		
Число формульных единиц на ячейку Z	1		
Объем элементарной ячейки, V [Å ³]	264,84		
Плотность $d_{\text{рентг}} [r/\text{см}^3]$	6,614		
Профильный <i>R</i> -фактор (<i>R</i> _{пр})	4,68		
Весовой <i>R</i> -фактор (<i>R</i> _{вес})	5,99		
χ^2	3,45		
Количество рефлексов	259		
Тип профильной функции	псевдо-Войт		
Функция, описывающая фон	15-полиномная функция Чебышева		

излучение, Ge-монохроматор), геометрия на пропускание. Для обработки полученных данных использовали пакеты программ POWDER и WINXPOW. Идентификацию соединений проводили с помощью рентгенометрической базы данных PDF-2. Рентгенограмму полученного образца, за исключением нескольких линий интенсивностью 1,0–1,5%, проиндицировали в тетрагональной сингонии. Непроиндицированные линии были отнесены к сульфиду серебра. Для решения структуры была выбрана группа Р-4. Атомные позиции тяжелых атомов были получены прямыми методами в программе EXPO [15]. Положение легких атомов определяли чередованием Фурье синтезов и циклов методом наименьших квадратов. Полнопрофильное уточнение кристаллической структуры методом Ритвельда проводили с помощью программы JANA2000 [16]. При двухфазном уточнении, учитывающем наличие примеси сульфида серебра, существенного улучшения параметров не происходило. Данные съемки и уточнения кристаллической структуры приведены в табл. 1, вид экспериментальной, рассчитанной и разностной порошко-грамм показан на рис. 1. Атомные параметры приведены в табл. 2. Основные расстояния и углы представлены в табл. 3. Тепловые параметры атомов серебра уточняли, а тепловые параметры (U_{изо}) легких атомов были приняты равными 0,007 Å², и их уточнения не проводили.

ИК-спектроскопия. Регистрацию ИК-спектров проводили по однолучевой схеме на приборе «TENSOR-27» (*«Вгиker»*). Подготовка образца включала измельчение и прессование с КВг в прессформе диаметром 3 мм. Сначала снимали спектр атмосферы в качестве фона, а затем таблетку с образцом. Спектры регистрировали до 400 см⁻¹, так как ниже этого предела КВг не прозрачен для ИК-излучения. Все спектры снимали с разрешением 4 см⁻¹.

Обсуждение результатов

Нами получен образец α -модификации соединения [Ag₈S₃]SO₄, пригодный для проведения рентгеноструктурного анализа данных рентгенограммы порошка. В ходе эксперимента мы варьировали время нагревания, скорость и порядок смешивания растворов (эксперименты, связанные с изменением концентраций исходных растворов описаны в литературе [14]). При анализе данных рентгеновской

Таблица 2

Атом	Позиция	Заселенность позиции	x/a	y/b	z/c	$U_{_{\rm H3O}}$
Ag(1)	4 <i>h</i>	1	0,2552(4)	0,2682(4)	1,0158(5)	0,0080(3)
Ag(2)	4h	1	0,2924(2)	-0,0088(7)	0,5303(7)	0,0264(6)
S(1)	2g	1	0,5	0	0,152(2)	0,007
S(2)	2e	0,5	0	0	-0,277(1)	0,007
S(3)	1 <i>d</i>	1	0,5	0,5	0,5	0,007
O(1)	4 <i>h</i>	1	0,508(4)	0,324(1)	-0,365(2)	0,007

Позиционные и тепловые параметры в кристаллической структуре [Ag_8S_3]SO_4 \mathbf{S}_{3}

Рис. 1. Сверху вниз: экспериментальная (×) и рассчитанная (–) дифрактограммы (*1*); положение пиков (*2*); разностный профиль для уточнения кристаллической структуры α-Ag₈S₃SO₄ методом Ритвельда (*3*)

дифракции было установлено, что конечный образец содержит незначительную примесь сульфида серебра. Соединение α -Ag₈S₃SO₄ не имеет структурных аналогов. В кристаллической структуре α -[Ag₈S₃]SO₄ можно выделить трехмерный каркас [Ag₈S₃]²⁺ и анионы SO₄²⁻, расположенные в пустотах этого каркаса (рис. 2).

Рис. 2. Проекция кристаллической структуры $\alpha\text{-}[\mathrm{Ag}_8\mathrm{S}_3]\mathrm{SO}_4$ на плоскость ab

Наиболее значимые межатомные расстояния и валентные углы в кристаллической структуре [Ag₈S₃]SO₄

Межатомные расстояния, Å				
Ag(1)–S(1)	2,627(3)			
Ag(1)–S(1)	2,516(3)			
Ag(1)-O(1)	2,45(2)			
Ag(1)-O(1)	2,69(2)			
Ag(1)–Ag(2)	3,193(5)			
Ag(1)–Ag(2)	2,924(5)			
Ag(1)–Ag(2)	3,309(5)×2			
Ag(2)–Ag(2)	2,996(6)×3			
Ag(2)–S(2)	2,326(4)			
Ag(2)–S(2)	2,472(5)			
Ag(2)–O(1)	2,91(1)			
Ag(2)–O(1)	2,74(1)			
S(2)–S(2)	2,28(1)			
S(2)–S(2)	2,83(17)			
S(3)–(O1)	1,443(3)×4			
Валентные углы, град				
O(1)–S(3)–O(1)	103,2(1)×4			
O(1)–S(3)–O(1)	123,0(6)×2			

Таблица З

Рис. 3. Слои призм Ag_6S в кристаллической структуре α -[Ag_8S_3]SO₄

Атомы серы, входящие в состав структуры соединения, занимают три независимые кристаллографические позиции. Первый атом серы (S(1)) полностью заселяет позицию 2g и окружен шестью атомами серебра на расстоянии от 2,51 до 2,82 Å, образующими вокруг него немного искаженную тригональную призму. Подобная координация атомов серы наблюдается во многих сульфидах металлов, например, в сульфидах железа [17]. Каждая тригональная призма соединяется с четырьмя другими

одной квадратной грани. В результате объединения призм Ag₆S формируются слои, изображенные на рис. 3. Второй атом серы (S(2)) занимает кристаллографическую позицию 2е с заселенностью 0,5 и связывает слои в трехмерный каркас. Каждый атом S(2) связан с четырьмя атомами Ag(2) на расстоянии 2,32–2,47 Å. Атомы S(2) располагаются колонками вдоль оси с, расстояния между положениями атомов S(2) в колонке составляют 2,28 и 2,56 Å. Заселенность позиций 0,5 позволяет рассматривать три варианта размещения атомов S(2). Первый вариант расположения – это чередование атомов вдоль оси с на расстоянии 2,28 и 7,4 Å. Короткое расстояние S-S, равное 2,28 Å, предполагает образование связи S-S. В дисульфидах металлов расстояние S–S немного меньше, чем в α -[Ag₈S₃]SO₄, например в FeS₂ это расстояние составляет 2,22 Å [18], а в одном из соединений серебра, содержащем дисульфидную группу (Ад₈Ва₂S₇), - 2,15 Å [19]. Гантели S-S должны иметь формальный заряд, равный -2. Если мы принимаем степень окисления атомов серебра за +1, то в соединении α -[Ag_oS₂] SO₄ заряд формульной единицы будет равен +2: $(Ag)_{8}^{+8}(S_{2})^{-2}S^{-2}(SO_{4})^{-2}$. Кроме того, при данном распределении атомов серы часть атомов серебра не будет иметь с ними связей. Второй вариант расположения – это чередование атомов вдоль оси с на расстоянии 2,56 и 7,12 Å (рис. 4, *a*); третий вариант – расположение атомов на расстоянии 4,48 Å (рис. 4, б). Расстояния таковы, что образования гантелей S-S не происходит, и атомы серы имеют степень окисления -2, что обеспечивает электроней-

Рис. 4. Вид кристаллической структуры α -[Ag₈S₃]SO₄ в плоскости *ac* : *a* – второй вариант распределения атомов S(2) (расстояние S(2)–S(2) составляет 2,56 и 7,4 Å), δ – третий вариант распределения атомов S(2) (расстояние S(2)–S(2) составляет 4,48 Å)

тральность. В двух последних вариантах атомы серы могут располагаться в вершинах квадратных пирамид выше или ниже относительно плоскостей ab, проходящих через основания этих пирамид. Одно из возможных расположений атомов S(2) в шахматном порядке в плоскости ab, колонками вдоль оси c, показано на рис. 4. Второй и третий варианты могут равновероятно сосуществовать в структуре соединения.

Атом S(3) размещается в позиции 1*d* и является центром искаженного тетраэдра SO₄²⁻. Атом кислорода занимает одну кристаллографически независимую позицию 4*h*. Все длины связи S–O равны 1,44 Å, а значения углов отклоняются от 109,5°, таким образом тетраэдр SO₄²⁻ искажается, приобретая симметрию D_{2d} (рис. 5). Минимальное расстояния от атома O(1) до атомов серебра каркаса составляет 2,45 Å (для сравнения в сульфате серебра это расстояние равно 2,39 Å [20], в оксиде Ag₂O – всего 2,05 Å [21]).

В каркасе присутствуют два кристаллографически независимых атома серебра. Атом Ag(1) связан с двумя атомами S(1) на расстоянии 2,63 и 2,52 Å и дополнительно координирован четырьмя атомами Ag(2): одним на достаточно коротком расстоянии 2,92 Å и тремя на расстоянии до 3,3 Å. Атом Ag(2) связан с двумя атомами серы S(2) на расстоянии 2,33 и 2,47 Å и дополнительно координирован четырьмя атомами серебра на расстоянии до 3 Å. В каркасе α -[Ag₈S₃]SO₄ присутствует большое число контактов Ag–Ag на расстоянии около 3 Å. Тоннели каркаса, располагающиеся вдоль оси *с*, занимают искаженные тетраэдрические анионы SO₄^{2–}, имеющие сим-

Рис. 5. Координационное окружение сульфат аниона в соединении α -[Ag₈S₃]SO₄, черными линиями показаны контакты Ag-Ag до 3,3 Å, пунктирными линиями контакты Ag-O 2,45

Рис. 6. Часть ИК-спектра соединения α-[Ag₈S₃]SO₄

метрию D_{2d} (рис. 4, 5), что согласуется с данными ИК-спектроскопии (рис. 6), указывающими на понижение симметрии тетраэдра по сравнению с T_d . Частоты колебаний нового комплекса сравнивали с соответствующими частотами для чистого сульфата серебра. В ИК-спектре соединения α -[Ag₈S₃]SO₄ наблюдается расщепление трижды вырожденных асимметричных колебаний F_2 (валентного колебания в диапазоне 1150–1000 см⁻¹ и деформационного колебания около 600 см⁻¹), что может быть только следствием искажения тетраэдра SO₄²⁻.

Нужно отметить, что в литературе описан ряд соединений, в которых каркас, так же как в соединении [Ag₈S₃]SO₄, образован атомами металла и серы, а в пустотах располагаются тетраэдрические анионы SiO₄²⁻ [22-24]. Атомы серы, входящие в каркас этих соединений, также связаны только с атомами металла и имеют разнообразную координацию. В каркасе соединения $Yb_5S(SiO_4)_3$ [22] сера имеет октаэдрическую координацию, а в изоструктурных соединениях $Fe_8(BeSiO_4)_6X_2$ (X = S, Se, Te) [23] – тетраэдрическую. Существуют также соединения, в которых атом серы имеет квадратнопирамидальную координацию, как атом S(2) в соединении $[Ag_8S_3]SO_4$, например в Ho₂S(SiO₄) [24], а также тригонально-призматическую, как атом S(1) в соединении [Ag₈S₃]SO₄, например в соединении $NaSm_9S_2(SiO_4)_6$ [25]. Кроме того, известен ряд изоструктурных соединений лантанидов с общей формулой $M_4S_3(Si_2O_7)$ (M = Gd–Tm) [26], в каркасе которых, так же как в исследованном соединении [Ag₈S₃]SO₄, атомы серы занимают две разные позиции и имеют аналогичную координацию (один из атомов имеет почти плоско-квадратную координацию, а второй находится в центре треугольной призмы). Кристаллическая структура комплекса сульфидо-сульфата серебра (α -[Ag₈S₃]SO₄) однозначно позволяет отнести его к классу соединений [Ag_nX_x]A_y. В структурах этих комплексов каркас [Ag_nX_x] построен из атомов серебра и неметалла X с высокими координационными числами, при этом существуют контакты Ag–Ag на расстоянии около 3 Å. В соединении α -[Ag₈S₃]SO₄ каркас образован атомами серы с координационными числами 4, 6 и атомами серебра, а расстояние Ag–Ag лежит в

СПИСОК ЛИТЕРАТУРЫ

- 1. Aliyu H.N., Gillard R.D., Honeywill J.D., Lightfoot P., Rocha J. // Polyhedron. 1996. 15. P. 2409.
- Persson K., Holmberg B. // J. Solid State Chem. 1982. 42. P.
 1.
- Lieser K.H. // Z. Anorg. Allg. Chem. Teil B. 1960. 305. P. 133.
- Braustein J., Blander M., Lindgren R.M. // J. Am. Chem. Soc. 1962. 84. P. 1529.
- 5. Lieser K.H. // Z. Anorg. Allg. Chem. 1960. 304. P. 296
- 6. Persson K. // Acta Crystallogr. Sect. B. 1979. 35. P. 1432.
- Persson K., Holmberg B. // Acta Crystallogr. Sect. B. 1977.
 33. P. 3768.
- 8. Persson K. // Acta Crystallogr. Sect. B. 1979. 35. P. 302
- 9. Bergerhoff G. // Z. Anorg. Allg. Chem. 1959. 299. P. 328
- Schultze-Rhonhof E., Bergerhoff G. // Acta Crystallogr. Sect. B. 1969. 25. P. 2645.
- Schultze-Rhonhof E. // Acta Crystallogr. Sect. B. 1975. 31. P. 2837.
- 12. Shestimerova T.A., Mitiaev A.S., Davliatshin D.I., Shevelkov A.V. // Z. anorg. allg. Chem. 636. P. 1941.
- Shestimerova T.A., Oleneva O.S., Mitiaev A.S., Bykov M.A., Davliatshin D.I., Shevelkov A.V. // Z. anorg. allg. Chem. 635. P. 732.
- 14. *Kurzawa M., Tomaszewicz E. //* J. Matter. Science. 2000. **35**. P. 795.

пределах от 2,92 до 3,30 Å. В пустотах каркаса соединений $[Ag_nX_x]A_y$ располагаются оксоанионы (A), не имеющие с каркасом сильных ковалентных связей. В каркасе соединения α - $[Ag_8S_3]SO_4$ размещаются дискретные анионы SO_4^{2-} , минимальное расстояние от атомов кислорода сульфат аниона до атомов серебра каркаса составляет 2,45 Å, что намного превышает соответствующее расстояние в оксиде серебра Ag_2O (2,05 Å).

- Altomare A., Caliandro R., Camalli M., Cuocci C., Giacovazzo C., Moliterni A. G. G., Rizzi R. // J. Appl. Crystallogr. 2004. 37. P. 1025.
- 16. *Petriuek V., Dusek M. //* Jana2000. Structure Determination SoftwarePrograms, Institute of Physics, Praha, Czech Republic.
- 17. *King H.E., Prewitt, C.T.* // Acta Crystallogr. B. 1982. **38**. P. 1877.
- 18. Rieder M., Crelling J.C., Sustai O., Drabek M., Weiss Z., Klementova M. // Int. J. Coal Geol. 2007. 71. P. 115.
- 19. Li H., Hwu S.-J. // Angew. Chem. Int. ed. 1999. 38. P. 3067.
- 20. Brese N.E., O'Keeffe M., Ramakrishna B.L., von Dreele R.B. // J. Solid State Chem. 1990. **89.** P. 184.
- Norby P., Dinnebier R.E., Fitch A.N. // J. Am. Cer. Soc. 1972.
 55. P. 25.
- Wickleder C., Hartenbach, I., Lauxmann P., Schleid T. // Z. Anorg. Allg. Chem. 2002. 628. P. 1602.
- Armstrong J.A., Dann S.E., Neumann K., Marco J.F. // J. Mater. Chem. 2003. 13. P. 1229.
- Hartenbach I., Meier S.F., Wontcheu J., Schleid T. // Z. Anorg. Allg. Chem. 2002. 628. P. 2907.
- 25. Sieke C., Schleid T. // Z. Anorg. Allg. Chem. 1999. 625. P. 131.
- 26. Sieke C., Hartenbach I., Schleid, T. // Z. Naturforsch., Teil B. 2002. 57. P. 1427.

Поступила в редакцию 20.01.11

CRYSTAL STRUCTURE OF α-Ag₈S₃SO₄

T.A. Shestimerova, A.S. Mitiaev, D.I. Davliatshin, A.V. Shevelkov

(Division of Inorganic Chemistry)

Crystal structure of α -Ag₈S₃SO₄ have been determined from the X-ray powder diffraction data. The compound crystallizes in the tetragonal space group P-4 with the unit cell parameters a = 7.2032(4) Å, c = 5.1043(5) Å, Z = 1, $R_f = 5.55$ %, $\chi^2 = 3.45$. The layers consisting of trigonal prisms Ag₆S connected by vertex are combined into three-dimensional framework by additional sulphur atoms. Distorted tetrahedral anions SO₄²⁻ are placed in framework cavities. SO₄²⁻ anion symmetry (D_{2d}) is confirmed by IR spectroscopy data.

Key words: silver, sulphur, sulphate anion, three-dimensional framework.

Сведения об авторах: Шестимерова Татьяна Алексеевна – аспирант химического факультета МГУ (shestim@inorg. chem.msu.ru); Митяев Александр Сергеевич – временно не работает; Давлятиши Дмитрий Ильфритович – ст. науч. сотр. кафедры физической химии химического факультета МГУ, канд. хим. наук; Шевельков Андрей Владимирович – профессор кафедры неорганической химии химического факультета МГУ, докт. хим. наук.