УДК 543.4:54.412.2

ОПТИЧЕСКИЕ И ЦВЕТОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОМПЛЕКСА НИКЕЛЯ(II) С 1-НИТРОЗО-2-НАФТОЛ-3,6-ДИСУЛЬФОКИСЛОТОЙ

В.М. Иванов, Т.О. Самарина, В.Н. Фигуровская

(кафедра аналитической химии; e-mail: mvonavi@mail.ru)

Спектрофотометрическим методом найдены оптимальные условия комплексообразования никеля(II) с 1-нитрозо-2-нафтол-3,6-дисульфокислотой (pH_{опт} = 7,2–8,8, 5-тикратный избыток реагента). Стехиометрическое соотношение Me : R = 1:2. Молярный коэффициент поглощения и цветометрические характеристики комплекса определены в интервале концентраций никеля(II) (4,09–16,35)×10⁻⁵ М. Молярный коэффициент поглощения комплекса равен $(7,52 \pm 0,05)\times10^3$ (n = 10, P = 0,95), цветометрические функции $B[(1,83 \pm 0,04)\times10^5]$ и $G[(1,76 \pm 0,05)\times10^5]$ (n = 9, P = 0,95) наиболее чувствительны.

Ключевые слова: цветометрия, комплексообразование, никель(II), 1-нитрозо-2нафтол-3,6-дисульфокислота.

Органические реагенты широко применяют в спектрофотометрических методах анализа [1], их избирательность зависит от природы комплексообразователя, основности лиганда, стехиометрии компонентов в комплексе [2]. Нитрозонафтолы (1-нитрозо-2-нафтол, 2-нитрозо-1-нафтол) и их сульфопроизводные [1-нитрозо-2-нафтол-3,6-дисульфокислота (нитрозо-P-соль, HPC), 1-нитрозо-2-нафтол-4-сульфокислота (нитрозо-Н-соль)] являются хелатообразующими бидентатными лигандами.

Наличие в молекулах этих реагентов различных донорных атомов позволяет координировать ион металла как по атому азота (нитрозо- или оксимная группы), так и по атому кислорода (гидрокси- или оксигруппы), благодаря чему круг элементов, реагирующих с нитрозооксисоединениями, значительно шире, чем с α-диоксимами [3].

Широкое применение НРС для фотометрического определения Co(II, III) [3–8] обусловлено устойчивостью и инертностью комплекса в кислой среде, что позволяет определять кобальт в присутствии других ионов переходных металлов. НРС изучена в качестве реагента на Fe(II, III) [3, 5, 9], Ni(II) [3, 8, 10–12], Cu(II) [5, 8, 10, 12, 13], Ru(III, IV) [14, 15], Rh(III) [5, 16], Pd(II) [5, 16, 17, 18], Os(II) [16, 17], Ir(IV) [3], Th(IV) [5]. Соотношение Ме:R приводится не во всех работах, но не превышает 1:3. Указанные ионы металлов, за исключением тория, переходные и взаимодействуют как с кислородом, так и с азотсодержащими реагентами, их комплексообразование предпочтительнее с хиноноксимной группой. Торий(IV) преимущественно взаимодействует с кислородсодержащими реагентами, а в случае нитрозонафтолов, скорее всего, с нитрозофенольной формой.

Реакции комплексообразования НРС с ионами переходных металлов изучены недостаточно, литературные данные противоречивы (различный рН_{опт} комплексообразования, не учтено влияние ионной силы растворов, зависимость оптической плотности от времени нагревания растворов, образование комплексов разной стехиометрии). Поэтому мы исследовали системы Co(II, III)–HPC [7], Fe(II,III)–HPC [9], Cu(II)– HPC [13], Pd(II)–HPC [18], обратив особое внимание на оптические и цветометрические характеристики комплексов. Цветометрические характеристики комплекса никеля(II) с HPC в литературе отсутствуют.

Цель данной работы – выбор оптимальных условий комплексообразования никеля(II) с HPC, определение оптических и цветометрических характеристик комплекса, а также сравнение химико-аналитических и цветометрических характеристик изученных ранее комплексов.

Экспериментальная часть

Аппаратура. Оптическую плотность измеряли на фотоколориметре "КФК-3-01" относительно дистиллированной воды (l = 1,0 см); спектры диффузного отражения и цветометрические характеристики – на фотоколориметре "Спектротон" (ОКБА "Химавтоматика", г. Чирчик) (l = 0,5 см). Измеряли следующие цветометрические функции: X, Y, Z – координаты цвета в системе XYZ; L, A, B – координаты цвета в системе CIELAB; *L*, *S*, *T* – светлоту, насыщенность и цветовой тон соответственно; *W*–по-казатель белизны; *G* – показатель желтизны; pH контролировали на универсальном иономере "ЭВ-74" (стеклянный электрод "ЭСЛ-43-07").

Растворы. Исходный раствор никеля(II) (20 мкг/мл) приготовлен разбавлением раствора ГСО 7785-2000 никеля(II) (1,00 мг/мл) 0,01 М HNO₃. Раствор нитрозо-Р-соли (2,00×10⁻³ М) приготовлен растворением 756,0 мг препарата "ч.д.а." в воде и разбавлением водой до 1000 мл в мерной колбе. Кислотность создавали 0,5 М растворами CH₃COONa и 0,1 М NH₃ квалификации чистоты не ниже "х.ч.".

Методика. В мерные колбы емкостью 25 мл вводили 3–12 мл с интервалом 1 мл раствора никеля(II) (20 мкг/мл), 8 мл 2,00×10⁻³ М раствора HPC, 5 мл 0,5 М раствора CH₃COONa и 0,1 М раствор NH₃ по каплям. После разбавления водой до метки и перемешивания контролировали pH, измеряли оптическую плотность и цветометрические характеристики.

Расчеты. Молярные коэффициенты поглощения и молярные коэффициенты цветометрических функций (МКЦФ) рассчитаны стандартными методами, уравнения градуировочных графиков обработаны методом наименьших квадратов с помощью программы *Microsoft Excel 2003*.

Результаты и их обсуждение

Спектр поглощения реагента в видимой области имеет максимумы поглощения при 370 и 430 нм [19]. Раствор комплекса никеля(II), полученный при 10-тикратном избытке реагента, также имеет максимум светопоглощения при 370 нм, однако по сравнению со спектром реагента происходит уширение пика при 430 нм и оптическая плотность пика уменьшается (рис. 1). Из-за сильного наложения спектров оптимальные условия комплексообразования изучали при 490 нм относительно воды, где светопоглощение реагента практически равно нулю, а также для сравнительной характеристики ранее изученных систем.

Влияние кислотности среды изучали на фоне ацетатного буферного раствора. Содержание никеля было постоянным (50 мкг), HPC – 4 мл $2,00 \times 10^{-3}$ М (10-тикратный избыток), вводили от 0,5 до 6,0 мл 0,5 М раствора CH₃COONa и 0,1 М раствора NH₃ по каплям, конечный объем 25 мл (рис. 2). Оптимальный интервал pH комплексообразования 7,2–8,8.

Оптимальную концентрацию НРС выбирали при рН 7,5. Содержание никеля было постоянным (50 мкг), вводили 5,0 мл 0,5 М раствора CH₃COONa и

Рис. 1. Спектры поглощения растворов HPC (1) и комплекса Ni(II) с HPC (2) при pH 7,5 (3,2'10⁻⁴ M HPC, 3,4×10⁻⁵ M Ni(II))

Рис. 2. Зависимость оптической плотности раствора HPC (1) и комплекса Ni(II) с HPC (2) от pH при 490 нм $(3,2\times10^{-4} \text{ M HPC}, 3,4\times10^{-5} \text{ M Ni(II)})$

необходимое количество 0,1 М раствора NH_3 по каплям до pH 7,5, объем 2,00×10⁻³ М раствора HPC варьировали от 0,1 до 6,0 мл, конечный объем 25 мл. Для количественного образования комплекса достаточно 2 мл 2,00×10⁻³ раствора HPC (5-тикратный избыток).

Стехиометрия образующегося комплекса установлена методом молярных отношений [18]. Обработкой кривой насыщения по реагенту установлено образование комплекса стехиометрии Me:R = 1:2 (рис. 3). В работе [11] обнаружены комплексы стехиометрии Me:R 1:1 и 1:2, однако в работе [12] сорбционно-фотометрическим методом на анионобменнике установлена стехиометрия 1:1. Обработку кривой $A-C_{\rm HPC}$ проводили билогарифмическим методом. Для реакции общего вида

 $Me^{n+} + mHR \leftrightarrow Me_n^{n-m} + mH^+$

константа равновесия в логарифмической форме имеет вид (без заряда комплекса)

Рис. 3. Кривая насыщения комплекса Ni(II) с HPC по реагенту: *1* – светопоглощение реагента, *2* – без поправки на поглощение реагента, *3* – с учетом поправки на поглощение реагента (3,4×10⁻⁵ M Ni(II), pH 7,5, 490 нм)

$$\lg K_{\rm p} = \lg \{ [\mathrm{MeR}_n] / [\mathrm{Me}^{n^+}] \} - m \mathrm{pH} - m \lg [\mathrm{HR}], \quad (1)$$

а при подстановке $A_x = [MeR_n]$ и $A_0 - A_x = [Me^{n^+}]$, где A_0 – максимальная оптическая плотность при связывании ионов металла и A_x – оптическая плотность раствора не полностью образовавшегося комплекса, имеем

$$\lg K_{\rm p} = \lg [A_x/(A_0 - A_x)] - m \rm{pH} - m \lg [\rm{HR}].$$
 (2)

Последнее уравнение можно использовать для определения числа протонов, вытесненных ионами металла, как при варьировании концентрации реагента и постоянном pH, так и при переменном pH и постоянной концентрации реагента. С учетом pK_a реагента уравнение для расчета константы устойчивости имеет вид:

$$\lg\beta = \lg K_{\rm p} + mpK_{\rm a}.$$
 (3)

Тангенс угла наклона прямой в билогарифмическом варианте к оси абсцисс равен числу протонов, вытесненных ионами металла при образовании комплекса Ni(II) с HPC. Стехиометрическое соотношение Me:R, установленное при обработке данным способом, равно 1:2.

Отрезок, отсекаемый прямой на оси абсцисс, позволяет вычислить константу равновесия реакции комплексообразования и рассчитать константу устойчивости комплекса по уравнениям (2) и (3).

Подчинение закону Бера наблюдается в диапазоне содержаний никеля (4,09–16,35)×10⁻⁵ М (60–240 мкг в 25 мл раствора) при 490 нм. Уравнения градуировочных графиков имют вид:

$$A = 7,53 \times 10^{3}C + 0,01, \tag{4}$$

$$A = 0,13 \times 10^{3}C + 0,01, \tag{5}$$

где C – концентрация Ni(II) в M (4) и мкг в 25 мл (5). Молярный коэффициент поглощения равен (7,52±0,05)×10³ (n = 10, P = 0,95), что свидетельствует о средней чувствительности реакции.

Цветометрические характеристики комплекса приведены в табл. 1. Цветометрия имеет ряд преимуществ перед спектрофотометрией: не требует монохроматизации светового потока, прибор выдает усредненное значение изучаемых цветовых характеристик. Метод позволяет определить до 12 характеристик реагентов, их комплексов в растворах и сорбатах, превосходя по чувствительности спектрофотометрический вариант на 1-2 порядка для реакций в растворах и до 3 порядков для сорбционно-фотометрических методик [20]. Ранее [7, 9, 13, 18] определены цветометрические характеристики 3*d*-переходных металлов и показано увеличение чувствительности их определения в 20-100 раз. Для сравнения характеристик мы установили цветометрические характеристики и вычислили молярные коэффициенты цветометрических функций для комплекса Ni(II) с HPC (табл. 2, 3).

МКЦФ рассчитывали аналогично молярным коэффициентам поглощения. Они уменьшаются в последовательности:

Наиболее чувствительны для комплекса Ni(II) с HPC являются $G[(1,76\pm0,05)\times10^5]$ и $B[(1,83\pm0,04)\times10^5]$ (n = 9, P = 0.95).

При изучении комплекса цветометрическим методом установлено увеличение чувствительности аналитической реакции в 23–24 раза по сравнению с фотометрическим вариантом, диапазон линейности цветометрических функций составляет (4,09–16,35)×10⁻⁵ М (80–240 мкг в 25 мл раствора).

Практически для всех комплексов с ионами металлов наиболее чувствительными являются функции G и Z, а наименее – L и X [исключение составляют комплексы с Fe(II, III) зеленого цвета] (табл. 3).

Для оценки перспектив использования полученных результатов сопоставлены оптические и цветометрические характеристики для комплексов ионов *d*-переходных металлов с НРС (табл. 3, 4). Молярные коэффициенты поглощения уменьшаются в последовательности:

$$Co(II) > Fe(II) > Fe(III) > Co(III) >$$

 $Cu(II) > Pd(II) > Ni(II).$

Они близки и показывают среднюю чувствительность аналитических реакций, однако, в отличие от них,

Функция*	0	60	80	100	120	140	160	180	200	220	240
R ₄₉₀	0,863	0,782	0,704	0,636	0,575	0,523	0,476	0,434	0,393	0,362	0,332
X	71,22	68,88	68,55	68,29	67,88	67,63	67,00	66,38	65,99	65,61	64,78
Y	85,29	82,55	81,51	80,49	79,38	78,56	77,35	76,16	75,20	74,33	73,10
Ζ	26,72	21,07	18,79	17,29	15,51	14,27	12,68	11,21	10,24	9,43	8,35
L	94,00	92,81	92,36	91,90	91,40	91,03	90,48	89,93	89,48	89,08	88,49
Α	-24,70	-24,50	-23,30	-21,90	-20,60	-19,50	-18,50	-17,50	-16,40	-15,60	-14,90
В	67,80	75,02	78,44	80,61	83,50	85,68	88,55	91,40	93,35	95,01	97,46
S	72,16	78,92	81,83	83,53	86,02	87,89	90,47	93,07	94,80	96,29	98,60
Т	110,0	108,10	106,50	105,20	103,90	102,9	101,8	100,9	100,0	99,36	98,74
W	27,58	20,74	17,81	16,07	13,55	11,65	9,02	6,39	4,62	3,09	0,73
G	73,65	79,74	83,20	85,81	88,72	90,93	93,49	95,94	97,88	99,51	101,3
$C_{\rm Ni(II)}^{**}$	0	4,08	5,45	6,81	8,18	9,54	10,90	12,26	13,63	14,99	16,35

Цветометрические характеристики комплекса никеля(II) с HPC (n = 9, P = 0.95)

*По горизонтали приведено содержание никеля, мкг в 25 мл раствора; **по горизонтали приведена равновесная концентрация никеля, М×10⁻⁵.

цветометрические функции чувствительнее. Прежде всего следует отметить, что комплексы образуют обе степени окисления – Co(II, III), Fe(II,III), причем молярный коэффициент поглощения и желтизна как самые чувствительные функции выше для низших степеней окисления.

Расположение донорных атомов в комплексах зависит от энергетических характеристик электронных орбиталей центрального атома, участвующего в образовании связей ковалентного характера, которые приводят к спариванию электронов. В результате этого освобождаются первоначально занятые ими d-состояния и образуются пространственно направленные связи (*dsp*²-гибридизация, конфигурация – плоский квадрат; $d^2 s p^3$ -гибридизация, конфигурация – октаэдр). Металлы с координационным числом равным 4 образуют плоские квадратные комплексы (Cu²⁺, Ni^{2+} , Pd^{2+}) стехиометрии Me:R = 1:2, а с 6 – октаэдрические (Fe²⁺, Co²⁺, Co³⁺ – Me:R = 1:3). Как плоскоквадратный, так и в октаэдрический комплекс Co(II) имеет один неспаренный электрон, но в октаэдре он расположен на более высоком энергетическом уровне,

Таблица2

Таблица 1

Уравнения гра	дуировочных	графиков дл	ля компле	кса
никеля(II) с НРС	$(C_{\rm Ni(II)} = (4,09 -$	$16,35) \times 10^{-5}$ M	M, n = 9, P	= 0,95)

Функция	Уравнение градуировочного графика	S _r
X	$-0,33 \times 10^5 C + 70,46$	0,02
Y	$-0,77 \times 10^{5}C + 85,71$	0,01
Ζ	$-1,02 \times 10^5 C + 24,33$	0,04
L	$-0,35 \times 10^5 C + 94,28$	0,01
А	0,79×10 ⁵ C-27,37	0,03
В	$1,82 \times 10^5 C + 68,35$	0,04
S	$1,59 \times 10^5 C + 72,85$	0,03
Т	$-0,77 \times 10^5 C + 10,48$	0,03
W	$-1,62 \times 10^5 C + 26,94$	0,03
G	$1,75 \times 10^5 C + 73,798$	0,05

Г	a	б	Л	И	Ц	a	3
---	---	---	---	---	---	---	---

Сводная таблица МКЦФ для комплексов *d*-элементов с НРС

Функция	МКЦФ×10 ⁻⁵							
	Fe(II) [9]	Fe(III) [9]	Co(II) [7]	Co(III) [7]	Ni(II)*	Cu(II) [13]	Pd(II) [18]	
X	5,08	3,61	6,2	8,4	0,33	1,10	2,74	
Y	4,04	3,66	12,9	15,6	0,77	2,10	4,06	
Ζ	3,01	1,92	25,0	21,8	1,04	2,58	5,63	
L	1,82	1,63	-	_	0,35	0,98	1,99	
Α	2,89	2,00	13,3	14,8	0,80	1,75	2,65	
В	0,60	1,37	12,9	9,1	1,83	2,42	3,67	
S	-	-	-	-	1,60	1,98	3,53	
Т	5,79	4,75	-	-	0,77	1,97	3,74	
W	1,64	0,45	13,8	10,7	1,63	2,01	3,93	
G	2,75	6,93	32,9	29,1	1,76	3,88	7,59	

*Данная работа.

Таблица 4

Химико-аналитические и оптические характеристики комплексов переходных *d*-элементов с НРС

Элемент	Соотношение Me:R	lgβ _n	Аналитическая длина волны, нм (максимумы поглощения, нм)	рН _{опт}	ε×10 ⁻⁴
3 <i>d</i> ⁵ Fe(II)	1:2	8,7 [9]	710	4,7–9,5	1,75±0,05
3d ⁶ Fe(III)	1:1	8,2 [9]	720	5,6-8,3	1,57±0,02
$3d^7$ Co(II)	1:3	13,3 [7]	430 (430, 490)	6,0–10,0	1,90±0,10
$3d^{6}$ Co(III)	1:3	35,15 [7]	490 (430, 490)	5,0-8,0	1,50±0,02
$3d^{8}$ Ni(II)	1:2	8,28*	490 370, 430)	7,2–8,5	0,75±0,05
$3d^{9}$ Cu(II)	1:2	9,75*	490 (400, 490)	6,5–7,9	1,21±0,05
5d ⁸ Pd(II)	1:2	8,91*	510 (400, 510)	1,2–3,8	0,98±0,01

*Устойчивость комплексных соединений рассчитана по аналогии с [9]

поэтому данная структура встречается чаще [5]. Только ионы Fe(III) образуют комплекс стехиометрии 1:1. Для Fe(III) можно предположить образование смешанолигандного комплекса с участием ОН⁻ или CH₃COO⁻, образующих с ним устойчивые комплексы [22] (табл. 5).

Таблица 5

Форма в комплексе	Fe(OH) ²⁺	Fe(OH) ₂ ⁺	Fe(CH ₃ COO) ²⁺	$Fe(CH_3COO)_2^+$
Lg β _n	11,87	21,17	3,38	6,10

289

Для Pd(II) при концентрации хлорид-ионов 1M и выше доминирует форма $[PdCl_4]^{2-}$ ($lg\beta_4 = 11, 12, \mu = 1, 0$) [16], поэтому возможно образование смешанолигандного комплекса с HPC и хлорид-ионами. Можно допустить в смешанолигандном комплексе присутствие ацетат-иона ($lg\beta_4 = 8, 50$) [22]. Этот анион способствует замещению соседних лигандов, что приводит к увеличению скорости реакции за счет лабильности комплексов и к полноте комплексообразования,

СПИСОК ЛИТЕРАТУРЫ

- Марченко З., Бальцежак М. Методы спектрофотометрии в УФ- и видимой областях в неорганическом анализе. М., 2007.
- 2. Перрин Д. Органические аналитические реагенты. М., 1967.
- 3. *Пешкова В.М., Савостина В.М., Иванова Е.К.* Аналитические реагенты. Оксимы. М., 1977.
- Хольцбехер З., Дивиш Л., Крал М., Шуха Л., Влачил Ф. Органические реагенты в неорганическом анализе. М., 1979.
- Умланд Ф., Янсен А., Тириг Д., Вюнш Г. Комплексные соединения в аналитической химии. М., 1975.
- Пешкова В.М., Громова М.И. Методы абсорбционной спектроскопии в аналитической химии. М., 1976.
- Иванов В.М., Фигуровская В.Н., Ершова Н.И., Мамедова А.М., Чинь Тхи Тует Май // Журн. аналит. химии. 2007. 62. С. 364.
- Ghasemi J., Shahabadi N., Seraji H.R. // Analyt. Chim. Acta. 2004. 510. P. 121.
- Иванов В.М., Чинь Тхи Тует Май, Фигуровская В.Н., Мамедова А.М., Ершова Н.И. // Журн. аналит. химии. 2006. 61. С. 932.
- 10. Барбалат Ю.А. Дис. ... канд. хим. наук. М., 1975.
- 11. Mahan A., Dey A.K. // J. Inorg. Nucl. Chem. 1973. 35. P. 3263.
- 12. Барбалат Ю.А., Иванов В.М. // Вестн. Моск. ун-та. Сер. 2.
- Химия. 1996. **37.** С. 48.

что в свою очередь повышает чувствительность аналитической реакции и улучшает воспроизводимость результатов [16].

В оптическом варианте реакции HPC с этими ионами дают среднюю чувствительность, что можно преодолеть использованием цветометрических функций, переводом реакции в вариант твердофазной спектрофотометрии (ТФС), либо сочетанием ТФС с цветометрией.

- Иванов В.М., Самарина Т.О., Фигуровская В.Н. // Вестн. Моск. ун-та. Сер. 2. Химия. 2010. 51. С. 302.
- 14. Ланская С.Ю., Башилов А.В., Золотов Ю.А. // Вестн. Моск. ун-та. Сер. 2. Химия. 2006. **47.** С. 182.
- Ланская С.Ю., Башилов А.В. // Вестн. Моск. ун-та. Сер. 2. Химия. 2006. 47. С. 257.
- Гинзбург С.И., Езерская Н.А., Прокофьева И.В., Федоренко Н.В., Шленская В.И., Бельский Н.К. Аналитическая химия платиновых металлов. М., 1972.
- Бимии Ф. Аналитическая химия благородных металлов. М., 1969.
- Иванов В.М., Самарина Т.О., Фигуровская В.Н. // Вестн. Моск. ун-та. Сер. 2. Химия. 2010. 51. С. 110.
- Иванов В.М., Мамедова А.М., Фигуровская В.Н., Ершова Н.И., Барбалат Ю.А., Чинь Тхи Тует Май // ЖАХ. 2006. 61. С. 620.
- Булатов М.И., Калинкин И.П. Практическое руководство по фотоколориметрическим и спектрофотометрическим методам анализа. Л., 1972.
- 21. Иванов В.М., Кузнецова О.В. // Успехи химии. 2001. **70.** С. 411.
- 22. Алимарин И.П., Ушакова Н.Н. Справочное пособие по аналитической химии. М., 1977.

Поступила в редакцию 20.10.10

INVESTIGATION OF COMPLEX FORMATION OF NICKEL(II) WITH 1-NITROSO-2-NAPHTHOL-3,6-DISULFONIC ACID OPTICAL AND CHROMATICITY METHODS

V.M. Ivanov, T.O. Samarina, V.N. Figurovskaya

(Division of Analytical Chemistry; e-mail: mvonavi@mail.ru)

Optimal conditions of complexation nickel(II) with 1-nitroso-2-naphthol-3,6-disulfonic acid were found by spectrophotometric method. An optimum interval pH formation of a complex 7,2–8,8 with stoichiometrical ratio Me:R = 1–2. The five-multiple surplus reagent suffices for quantitative formation of a complex. Molar coefficient of absorption and characteristics of chromaticity of a complex in an interval concentration of nickel (4,08–16,35)×10⁻⁵ M are determined. Molar coefficient of absorption is equal (7,52 ± 0,05)×10³ (n = 10, P = 0,95), $B [(1,83\pm0,04)\times10^5]$ and $G [(1,76 \pm 0,05)\times10^5]$ (n = 9, P = 0,95) are the most sensitive functions of chromaticity.

Key words: chromaticity, complexformation, nickel(II), 1-nitroso-2-naphthol-3,6disulfonic acid.

Сведения об авторах: Иванов Вадим Михайлович – профессор кафедры аналитической химии химического факультета МГУ, докт. хим. наук (mvonavi@mail.ru); Самарина Татьяна Олеговна – аспирант кафедры аналитической химии химического факультета МГУ ((495) 939-22-77); Фигуровская Валентина Николаевна – науч. сотр. кафедры аналитической химии химического факультета МГУ, канд. хим. наук.