УДК 544.55

ДИАГНОСТИКА ПЛАЗМЫ БАРЬЕРНОГО РАЗРЯДА ВО ВЛАЖНОМ АРГОНЕ МЕТОДОМ КРОСС-КОРРЕЛЯЦИОННОЙ СПЕКТРОСКОПИИ

П.А. Татаренко, К.В. Козлов, В.Г. Самойлович, М.В. Соколова*

(кафедра физической химии; e-mail: kozlov@kge.msu.ru)

Работа посвящена изучению барьерного разряда во влажном аргоне. Представлены результаты применения метода кросс-корреляционной спектроскопии как способа диагностики плазмы газовых разрядов. Проанализирован спектр излучения барьерного разряда во влажном аргоне. Установлено, что развитие микроразрядов в рассматриваемой системе протекает по многостадийному механизму, ключевую роль в котором играют электронно-возбужденные метастабильные атомы аргона.

Ключевые слова: барьерный разряд, кросс-корреляционная спектроскопия.

Барьерный разряд во влажном аргоне – эффективный генератор химически активной плазмы в последние годы находит все более широкое применение [1]. Оптимизация параметров этого плазмохимического реактора и поиск новых областей его практического использования требуют глубокого понимания механизма развития разряда и кинетики протекающих в нем элементарных процессов, что обусловливает необходимость проведения диагностики плазмы в рассматриваемой системе. Метод кросс-корреляционной спектроскопии зарекомендовал себя как весьма информативный способ диагностики плазмы газовых разрядов [2, 3]. В настоящей работе представлены результаты применения этого метода для исследования барьерного разряда во влажном аргоне.

Эксперимент

Схема экспериментальной установки изображена на рис. 1. Центральное звено установки – разрядная ячейка, куда после предварительной продувки осушенным воздухом из газотранспортной системы подается рабочий газ, попадающий в пространство между металлическими электродами, покрытыми слоем стекла толщиной около 1 мм (рис. 2). Специальная форма электродов с полусферической рабочей поверхностью обеспечивает локализацию следующих друг за другом микроразрядов, если выбрана такая амплитуда напряжения, что за один полупериод напряжения возникает единственный микроразряд (этот спо-

соб локализации барьерного разряда подробно описан в работах [2, 4]). Для измерений использовали синусоидальное напряжение питания частотой 5 кГц при небольшом избыточном давлении (р = 1,02 атм.). Межэлектродный зазор (кратчайшее расстояние между поверхностями стекла) составляет 1,9 мм. В качестве рабочего газа использовали смесь аргона (класс "ВЧ") с парами воды, получаемую на выходе из барботера, включенного в газотранспортную систему. Подробное описание метода кросс-корреляционной спектроскопии дано в монографии [3]. Основная идея этого метода заключается в определении динамики изменения интенсивности излучения I(t) исследуемого объекта (периодически повторяющегося процесса) путем измерения корреляции C(t) между двумя оптическими сигналами, поступающими на детекторы от одного и того же источника света. В качестве детекторов мы использовали фотоэлектронные умножители ФЭУ 136 и ФЭУ 106, обозначенные на рис. 1 как ФЭУ 1 и ФЭУ 2 соответственно. Синхронизирующий сигнал, регистрируемый ФЭУ 1, запускает время-амплитудный преобразователь (ВАП) системы время-коррелированного счета фотонов «ФЛУОР-99» [5], задавая тем самым относительную временную шкалу. Второй оптический сигнал, прошедший через монохроматор, детектируется ФЭУ 2, который работает в режиме счета единичных фотонов. Сигнал от ФЭУ 2 останавливает развертку ВАП, и система «ФЛУОР-99» таким образом производит

^{*}ГОУВПО МЭИ (ТУ).

Рис. 1. Схема экспериментальной установки: ГИ – генератор импульсов Г5-54; ОСЦ – осциллограф С1-55; ГС – генератор сигналов прямоугольной формы, программируемый Г6-31; УЧ – усилитель звуковой частоты УПВ-5; ТВ – трансформатор высоковольтный; КВ – киловольтметр С96; ВВЭ – высоковольтный электрод; МХ – монохроматор МДР-2; ТГ – термогигрометр «ИВА-6Б»; ФЭУ 1 – фотоэлектонный умножитель ФЭУ 136; ФЭУ 2 – фотоэлектонный умножитель ФЭУ 106; СВСФ – система время-коррелированного счета фотонов «ФЛУОР-99» [5]; М – манометр; ПК – персональный компьютер

измерение времени задержки этого сигнала относительно синхронизирующего импульса. Полученное статистическое распределение C(t) – накопленные корреляции – при соблюдении ряда условий, подробно рассмотренных в монографии [3], воспроизводит I(t) с достаточной точностью. Экспериментальная установка обеспечивает пространственное разрешение 0,1 мм и временное разрешение от 42 пс/канал до 36 нс/канал в зависимости от выбора шкалы ВАП, содержащей 1024 канала. Приведенные ниже результаты из-

Рис. 2. Конфигурация электродов

мерений радиационной кинетики барьерного разряда во влажном аргоне были получены на шкале ВАП 1,63 мкс с разрешением по времени 1,6 нс/канал.

Обсуждение результатов

Анализ приведенного на рис. 3 спектра барьерного разряда во влажном аргоне ($[H_2O] = 220$ ppm), измеренного в диапазоне длин волн от 200 до 850 нм, показал, что помимо пиков аргона в нем присутствуют полосы радикала OH[•]:

$$OH^{\bullet}(A^{2}\Sigma^{+})_{\nu} \rightarrow OH^{\bullet}(X^{2}\Pi)_{\nu} + h\nu$$

$$(308 < \lambda < 324 \text{ hm}; \lambda \approx 346 \text{ hm}) \qquad (1)$$

и, несмотря на малое содержание примеси N₂ в рабочей газовой смеси (10 ppm), полосы второй положительной системы азота:

$$N_2(C^3\Pi_u)_{\nu} \rightarrow N_2(B^3\Pi_g)_{\nu} + h\nu$$

$$(332 < \lambda < 382 \text{ HM}). \tag{2}$$

Кроме сигналов при $\lambda = 309$ нм и $\lambda = 337$ нм, соответствующих наблюдаемым максимумам полос

Рис. 3. Фрагменты спектра барьерного разряда во влажном аргоне ([H₂O]=220 ppm)

ОН[•] и N₂, для изучения радиационной кинетики плазмы разряда в рассматриваемых условиях мы выбрали следующие спектральные индикаторы:

$$Ar^{**} \rightarrow Ar^{*} + hv$$
 ($\lambda = 763,5$ HM), (3)

$$Ar^{***} \rightarrow Ar^{*} + h\nu \ (\lambda = 750,4 \text{ mm}).$$
 (4)

Здесь и далее обозначение Ar* использовано для метастабильных электронно-возбужденных состояний аргона, а обозначения Ar** и Ar*** – для двух излучающих состояний с энергиями возбуждения, отличающимися друг от друга на 0,31 эВ:

$$Ar + e \rightarrow Ar^{**} + \bar{e}$$

$$(\Delta E = 13,17 \text{ }3B), \qquad (5)$$

$$Ar + e \rightarrow Ar^{***} + \bar{e}$$

$$(\Delta E = 13,48 \text{ }3B). \qquad (6)$$

Энергии возбуждения молекул $N_2(C^3\Pi_u)$ и радикалов ОН[•]($A^2\Sigma^+$) в реакциях их образования из молекул N_2 и H_2O прямым электронным ударом значительно ниже соответствующих значений для процессов (5), (6):

$$N_{2} + e \rightarrow N_{2}(C^{3}\Pi_{u})_{v} + \bar{e}$$

$$(\Delta E = 11,0 \text{ }3B), \qquad (7)$$

$$H_{2}O + e \rightarrow OH^{\bullet}(A^{2}\Sigma^{+})_{v} + H + \bar{e}$$

$$(\Delta E = 9,2 \text{ }3B). \qquad (8)$$

Таким образом, выбор спектральных индикаторов (1–4) соответствует диапазону пороговых энергий электронов для процессов (5)–(8) от 9,2 до 13,5 эВ. Если предположить, что механизм образования излучающих частиц в рассматриваемой

системе ограничивается уравнениями (5)–(8), то следует ожидать, что вид пространственно-временных распределений интенсивности излучения для выбранных спектральных индикаторов будет отражать динамику изменения электронной плотности и напряженности электрического поля в разрядном промежутке [4]. Соответствующие экспериментальные результаты представлены на рис. 4.

Необходимо отметить, что сканирование по пространству проводилось вдоль оси канала микроразряда в диапазоне от 0 до 3,8 мм, что в два раза превышает величину разрядного промежутка (1,9 мм). Таким образом, на рис. 4 показано распределение интенсивности излучения не только в межэлектродном зазоре, но и на поверхности диэлектрика, причем диапазон 0,9 мм на графиках рис. 4 фактически соответствует расстоянию ~5 мм по поверхности электродов в радиальном направлении.

При анализе представленных на рис. 4 результатов привлекает внимание сходство распределений для $N_2(C^3P_u)$ и OH(A^2S^+), максимумы которых локализованы вблизи поверхностей электродов, причем катодные максимумы возникают примерно на 50 нс раньше анодных. Наблюдаемое сходство пространственно-временных распределений интенсивности излучения, вызванного процессами (1), (2), можно объяснить следующим образом. На начальной стадии разряда происходит накопление атомов аргона в метастабильных электронно-возбужденных состояниях по реакциям (3), (4), а также в результате возбуждения прямым электронным ударом:

$$Ar + \to Ar^* + \bar{e}.$$
 (9)

Рис. 4. Пространственно-временные распределения интенсивности излучения барьерного разряда во влажном аргоне для выбранных спектральных индикаторов

Если предположить, что основным каналом образования молекул $N_2(C^3\Pi_u)$ и радикалов ОН[•] (A²⁺) являются процессы взаимодействия метастабильных электронно-возбужденных атомов Ar* с молекулами воды и азота в основных состояниях

$$\mathrm{H}_{2}\mathrm{O} + \mathrm{Ar}^{*} \to \mathrm{OH}^{\bullet}(\mathrm{A}^{2}\Sigma^{+})_{\nu} + H + \mathrm{Ar}, (10)$$

$$N_2 + Ar^* \rightarrow N_2 (C^3 \Pi_u)_v + Ar, \qquad (11)$$

то следует ожидать, что пространственно-временные распределения концентраций рассматриваемых спектральных индикаторов будут зависеть только от локальных концентраций Ar*. В этом случае наблюдаемые пространственно-временные распределения интенсивности излучения молекул $N_2(C^3\Pi_u)$ и радикалов OH[•]($A^2\Sigma^+$) должны быть похожими друг на друга и отражать динамику изменения локальных концентраций метастабильных электронно-возбужденных атомов аргона.

Пространственно-временные распределения интенсивности излучения для спектральных индикаторов Ar** и Ar*** обладают более сложной структурой, две особенности которой следует рассмотреть подробно. Во-первых, это излучение происходит не только в разрядном промежутке, но и на поверхности электродов, причем разряд

9 ВМУ, химия, № 6

заходит на электроды гораздо глубже, чем наблюдаемое свечение молекул $N_2(C^3\Pi_u)$ и радикалов $OH^{\bullet}(A^{2}\Sigma^{+})$. Во-вторых, эти распределения имеют два максимума по времени. Такая особенность рассматриваемых экспериментальных результатов свидетельствует о том, что, в отличие от барьерного разряда в воздухе, механизм которого включает в себя только одну катодо-направленную ионизационную волну [2, 4], разряд во влажном аргоне развивается в виде последовательности ионизационных волн. Аналогичный механизм электрического пробоя в аргоне был обнаружен авторами [6], показавшими, что, начиная со второй ионизационной волны, основным каналом размножения электронов становится процесс ионизации метастабильных атомов аргона, образовавшихся на начальных стадиях разряда:

$$Ar^* + \bar{e} \to Ar^* + \bar{e}. \tag{12}$$

Поскольку значение пороговой энергии процесса (12) ниже потенциала ионизации атомов Ar в основном электронном состоянии как минимум на 12 эВ, для формирования второй и последующих ионизационных волн достаточно наличия электрического поля, напряженность которого значительно

меньше начальной. Поэтому развитие микроразряда барьерного разряда в аргоне не прекращается после того, как первая ионизационная волна достигает катода, и напряженность электрического поля в разрядном промежутке падает, что наблюдается, например, в случае барьерного разряда в воздухе [2, 4]. Накопление электронно-возбужденных метастабильных атомов Ar* в канале микроразряда обусловливает возможность формирования второй (анодо-направленной) ионизационной волны, которая возникает примерно через 50 нс после первой (катодо-направленной, см. рис. 4). Размножение электронов в анодо-направленной волне происходит по реакции (12), и следует ожидать, что и возбуждение излучающих состояний Ar** и Ar*** протекает преимущественно в результате взаимодействия электронов с атомами Ar*:

$$Ar^* + \bar{e} \to Ar^{**} + \bar{e}, \tag{13}$$

$$Ar^* + \bar{e} \to Ar^{***} + \bar{e}. \tag{14}$$

Заключение

Таким образом, в данной работе показано, что спектр излучения барьерного разряда во влажном аргоне в диапазоне длин волн от 200 до 800 нм помимо пиков аргона содержит также полосы излучения ОН (А) и второй положительной системы азота.

Установлено, что развитие микроразрядов в рассматриваемой системе протекает по многостадийному, включающему в себя как минимум две ионизационные волны, механизму, ключевую роль в котором играют электронно-возбужденные метастабильные атомы аргона.

Работа выполнена при финансовой поддержке Минобразования РФ (проект № 2.1.2/6234 в рамках аналитической ведомственной целевой программы «Развитие научного потенциала высшей школы (2009-2010 годы)»).

СПИСОК ЛИТЕРАТУРЫ

- 1. Dodet B., Odic E., Goldman A., Goldman M., Renard D. // J. Adv. Oxid. Technol. 2005. 8. N 1. P. 91.
- 2. *Wagner H.-E., Kozlov K.V., Brandenburg R.* Low Temperature Plasmas Fundamentals, Technologies and Techniques / Ed. R. Hippler, H. Kersten, M. Schmidt, K.H. Schoenbach. 2nd revised and enlarged ed. Berlin, 2008. P. 271.
- 3. *Becker W*. Advanced Time-Correlated Single Photon Counting Techniques. N.Y., 2005.
- 4. *Kozlov K. V., Wagner H.-E., Brandenburg R., Michel P. //* J. Phys. D: Appl. Phys. 2001. **34.** P. 3164.
- 5. Ветохин С.С., Ермалицкий Ф.А., Мельников С.М., Суханин С.В., Шойтов М.А. // Приборы и техника эксперимента. 1998. № 2. С. 5.
- 6. Aleksandrov N.L., Bazelyan E.M., Gorunov A.Yu., Kochetov I.V. // J. Phys. D: Appl. Phys. 1999. **32.** P. 2636.

Поступила в редакцию 23.11.09.

PLASMA DIAGNOSTICS OF THE BARRIER DISCHARGE IN HUMID ARGON BY CROSS-CORRELATION SPECTROSCOPY

P.A. Tatarenko, K.V. Kozlov, V.G. Samoylovich, M.V. Sokolova

(Division of Physical Chemistry)

Presented results of plasma diagnostics of the barrier discharge in humid argon were obtained by means of the method of cross-correlation spectroscopy. The emission spectrum of the barrier discharge in humid argon was determined. The development of a microdischarge in the system being considered is demonstrated to occur via a multiphase mechanism. The metastables of argon are shown to play a key role in this process.

Key words: uarrier discharge, cross-correlation spectroscopy.

Сведения об авторах: Татаренко Павел Александрович – мл. науч. сотр. кафедры физической химии химического факультета МГУ (paveltatarenko@mail.ru); Козлов Кирилл Вадимович – ст. науч. сотр. кафедры физической химии химического факультета МГУ (kozlov@kge.msu.ru), канд. хим. наук, доцент; Самойлович Вадим Георгиевич – ст. науч. сотр. кафедры физической химии химического факультета МГУ, канд. хим. наук (vadimsam@kge.msu.ru); Соколова Марина Владимировна – вед. научн. сотр. ГОУВПО МЭИ (ТУ), канд. техн. наук (sokolova@fee.mpei.ac.ru).