УДК 538.6. 541.123:546.661:548.4

ПРОЧНОСТЬ ГРАНУЛ НА ОСНОВЕ КРИСТАЛЛОСОЛЬВАТОВ СУЛЬФАТА КАЛЬЦИЯ

Л.П. Фирсова

(кафедра радиохимии, e-mail: YAS@ radio.chem.MSU.ru)

Исследовано влияние добавок мочевины, образующей с сульфатом кальция кристаллический аддукт состава CaSO₄×4CO(NH₂)₂, на прочностные свойства гранул, приготовленных из фосфогипса – промышленного отхода производства фосфорной кислоты. Сопоставлена прочность гранул на основе различных кристаллогидратов и кристаллосольватов.

Ключевые слова: фосфогипс, гранулы, прочность.

Экспериментальная часть

В качестве исходного компонента для гранулирования использовали фосфогипс, полученный при сернокислотном способе переработки природных фосфоритов на Воскресенском заводе минеральных удобрений. Этот фосфогипс, содержащий преимущественно CaSO₄×0,5H₂O, отмывали горячим водным раствором, насыщенным по дигидрату сульфата кальция, а затем несколькими порциями ацетона. Такая предварительная обработка позволяла сделать состав исходного продукта более воспроизводимым, а также освободить промышленный фосфогипс от гигроскопической воды и таким образом, остановив процесс перехода полугидрата в дигидрат, "законсервировать" его состав. Обработанный порошок фосфогипса содержал (мас.%): CaO (39±1), SO₃ (56±1), H₂O (6,60,3) и P₂O₅ (3,2±0,5).

Перед процедурой гранулирования порошок смачивали дистиллированной водой или водными растворами мочевины; ее концентрацию в растворах варьировали до 80 мас.%. В ряде опытов смачивающие растворы содержали также соединения меди или кобальта в концентрации от 0,2 до 5 мас.%. При смачивании навески порошкообразного фосфогипса тщательно перемешивали с водой или водными растворами в течение 2-4 мин. Весовое соотношение жидкой и твердой фаз подбирали опытным путем так, чтобы влажность шихты была оптимальной для получения сферических гранул диаметром 4±1 мм. Гранулирование увлажненной шихты проводили в тарельчатом грануляторе при заданных значениях скорости вращения тарелки и угла ее наклона. При подборе режима окатывания ориентировались на форму и размеры получаемых гранул.

С тарелки гранулятора окатыши осторожно переносили либо на подложки для высушивания до постоянного веса на воздухе при комнатной температуре, либо предварительно (до сушки) – в эксикаторы для упрочнения за счет "дозревания" с переходом полугидрата сульфата кальция в дигидрат во влажной атмосфере. Затем "созревшие" гранулы также сушили на воздухе.

Порции гранул по мере их созревания отбирали для изучения их прочности и соответствующего распределения. Предварительно порции достаточно прочных гранул ($p \ge 2 \text{ кг/см}^2$) распределяли по размерам методом ситового анализа. Прочность сферических гранул с диаметром в интервале 3-6 мм измеряли по усилию, необходимому для их разрушения при одноосном сжатии, с помощью экстензиметра "ИПГ-1" (Россия). Определяли среднюю величину p (r/cm^2), полученную на основании измерений для 15-20 и более гранул одного размера и идентичного состава. Для порций из 50-70 гранул одного размера изучали также их распределение по прочности. Кроме того, для порций из 15-20 одинаковых высушенных гранул определяли весовые доли порошков, отсеянных через сито с размером ячеек 0,5 мм, образующихся в результате истирания гранул в тарелке гранулятора, вращающейся в течение 20-30 мин.

Для порошков, образующихся при истирании гранул с мочевиной и без нее, с целью обнаружения изменений в содержании основных форм кристаллогидратов и возможных кристаллосольватов сульфата кальция дополнительно были получены рентгенограммы на рентгеновских дифрактометрах "ARL X*TRA" (США– Швейцария) с полупроводниковым детектором. Порозность гранул измеряли методом ртутной порометрии. Микроструктуру внешней поверхности и шлифов гранул, содержащих и не содержащих мочевину или другие примеси, анализировали визуально с помощью металлографического микроскопа "МИМ-7" и оптического микроскопа "МБИ-14" ("ЛОМО", Россия). Подготовленные шлифы для устранения пылевых остатков предварительно промывали ацетоном.

Результаты опытов

Результаты проведенного исследования иллюстрируют рис. 1-6. Как следует из экспериментальных данных, представленных в табл. 1, статическая прочность гранул с одинаковым временем созревания при смачивании фосфогипса растворами с мочевиной существенно выше, чем у гранул, для которых использовали смачивающие композиции без мочевины. Результаты определения прочности сухих гранул разного состава способом их истирания во вращающейся тарелке гранулятора с последующим измерением весовой доли образующегося при этом порошкообразного вещества подтвердили, что гранулы с мочевиной являются более прочными, так как весовая доля порошка в этих случаях меньше.

Характер данных, описывающих кинетику набора прочности различными гранулами, показывает, что полученные кривые (рис. 1) можно разбить на два участка (для времени упрочнения в пределах t < 1-2 ч и t > 2 ч). В присутствии мочевины упрочнение гранул ускоряется, причем особенно существенно на участке t < 2 ч. Необходимо отметить, что рост максимально достигнутой прочности и ускорение процесса упрочнения особенно существенны для гранул,

Таблица 1

Параметры прочности гранул в зависимости от содержания мочевины в смачивающем растворе

Концентрация раствора, мас.%		Параметры прочности гранул		
мочевина	соединения МКЭ	доля пыли, мас.%	p, кг·см ⁻²	
80	_	0,7±0,2	21±2	
80	0,5 CoSO ₄	0,8±0,2	20±2	
60	3,0 CuSO ₄	0,9±0,2	18±2	
_	5,0 CoSO ₄	1,0±0,4	6±2	

Рис. 1. Изменение со временем: в процессе дозревания прочности (*p*) гранул с разными примесями в составе смачивающего фосфогипс раствора: $1 - 2\% \text{ CoSO}_4$, 80% мочевины; $2 - 3\% \text{ CuSO}_4$, 60% мочевины; $3 - 1,5\% \text{ CoSO}_4$

содержащих помимо мочевины примесные ионы, например, Cu²⁺ или Co²⁺. Как следует из полученных данных, параметры распределения по прочности, в том числе средние значения ($p_{\rm cp}$), зависят от исходного состава шихты и времени дозревания гранул. При наличии мочевины в составе окатываемой шихты не только средняя прочность выше, но и разброс по прочности меньше (рис. 2, 3) и менее зависим от времени дозревания по сравнению с теми же характеристиками для гранул, не содержащих мочевины.

При визуальном осмотре поверхности и полученных шлифов различных гранул было отмечено, что образцы, в состав которых входит мочевина, имеют более плотную структуру и менее шероховатую (с меньшим количеством пор) поверхность по сравнению с более «рыхлыми» гранулами, не содержащими мочевины, причем эти особенности проявляются в гранулах на разных стадиях их созревания. Указанные наблюдения согласуются с данными порометрии, показавшими, что порозность (є) созревших гранул с мочевиной в зависимости от ее содержания варьируется в пределах 32-35, что меньше, чем у гранул без мочевины (є ≅ 38–41). На рис. 4–6 представлены рентгенограммы порошкообразных образцов для гранул, полученных при смачивании промышленного фосфогипса растворами как содержащими, так и не содержащими мочевину. В табл. 2, 3 приведены рентгенографические параметры для образцов с мочевиной.

Во всех случаях порошковые рентгенограммы включали дифракционные линии дигидрата и полугидратов сульфата кальция. Результаты рентгеновского фазового анализа показали, что в созревающих во влажной атмосфере гранулах без мочевины доля дигидрата возрастает со временем в согласии с данными по параллельному увеличению содержания крис-

Рис. 2. Распределение по прочности гранул без мочевины при времени созревания, ч : a - 8, $\delta - 24$

Рис. 3. Распределение по прочности гранул с мочевиной при времени созревания, ч : a - 8, $\delta - 24$

Температура	293 К			
Камера Гинье G670	"на просвет"			
Монохроматор	Изогнутый кристалл, германий (111)			
Длина волны	1,540598 Cu			
Детектор	" Imaging Plate "			
Симметрия	Моноклинная			
Ячейка А,Å	12,041(3)			
Ячейка В, Å	6,9591(15)			
Ячейка С, Å	12,731 (4)			
Угол, град	90,070 (15)			
Обьем ячейки, ${ m \AA}^3$	1066,8 (7)			

Т	а	б	Л	И	Ц	а	2
---	---	---	---	---	---	---	---

таллизационной воды [9, 10]. Если смачивающие растворы содержали мочевину, рентгенограммы имели дополнительные линии, характерные для кристаллосольвата CaSO₄×4CO(NH₂)₂ и мочевины. Результаты рентгено-фазового анализа (РФА) указывают на присутствие в гранулах при смачивании фосфогипса растворами мочевины новых кристаллических фаз кристаллосольвата CaSO₄×4CO(NH₂)₂ и мочевины. Известно [4, 10, 11], что при окатывании увлажненного порошка фосфогипса вначале быстро проходят процессы слипания кристаллических друз исходного полугидрата сульфата кальция с образованием протогранул, на которые далее за счет адгезионных сил налипает остальной порошок CaSO₄×nH₂O. На этих начальных стадиях пористость гранул очень велика. В фосфогипсе, смоченном водой или водными растворами МКЭ, поры заполнены растворами, содержащими МКЭ и другие компоненты, участвующие в образовании кристаллической структуры гранул. В этих случаях гигроскопическая поровая вода частично расходуется на образование дигидрата и частично испаряется. В результате значительная часть порового про-

Параметры рентгено-фазового анализа порошков, содержащих кристаллогидраты сульфата кальция, кристаллосольват CaSO₄×4CO(NH₂)₂ и мочевину

Таблица З

20	I abs	Н	К	L
11,9478	222	CaSO ₄ ×4CO(NH ₂) ₂		
12,1169	156	CaSO ₄ ×4CO(NH ₂) ₂		
14,7435	5356	1	1	0
16,5440	84	CaSO ₄ ×4CO(NH ₂) ₂	-	-
20,3331	183	-1	1	2
22,2588	3776	CO(NH ₂) ₂	-	-
23,3589	137	CaSO ₄ ×4CO(NH ₂) ₂	-	-
24,1627	87	CaSO ₄ ×4CO(NH ₂) ₂	-	-
24,6335	1747	CO(NH ₂) ₂	-	-
25,6333	3537	0	0	0
27,7992	176	CaSO ₄ ×4CO(NH ₂) ₂	-	
29,3311	2238	CO(NH ₂) ₂	-	
29,6970	6970	2	2	0
31,8353	6087	-1	2	4
32,9398	517	-4	0	2
34,2930	58	CaSO ₄ ×4CO(NH ₂) ₂	-	-
35,5330	840	CO(NH ₂) ₂	-	-
37,1304	493	CO(NH ₂) ₂	-	-
38,3574	499	-3	1	4
39,6035	346	1	3	0
40,5134	250	CO(NH ₂) ₂	-	-
41,2955	280	-4	0	4
41,5901	407	CO(NH ₂) ₂	-	-
42,1800	1385	-4	2	2
42,6454	498	0	0	6
47,4737	572	-3	3	2
49,2058	3337	-1	3	3
49,5370	363	CO(NH ₂) ₂	-	-

Данные РФА для образцов, содержащих мочевину

странства остается заполненной воздухом. В фосфогипсе, смоченном растворами мочевины, в порах уже в процессе окатывания шихты выпадают кристаллы мочевины и CaSO₄×4CO(NH₂)₂.

При выпадении кристаллы мочевины и кристаллосольвата CaSO₄×4CO(NH₂)₂ заполняют поры в гранулах, тем самым снижая их порозность и увеличивая прочность относительно сжатия. По-видимому, уменьшение порозности в присутствии мочевины можно рассматривать как одну из причин роста прочности гранул. Понижение порозности и обусловленное этим повышение прочности особенно существенно проявляются на ранних этапах эволюции гранул. Далее в образовавшихся свежих влажных гранулах (с большей или меньшей начальной прочностью, зависящей от доли незаполненного твердым веществом порового пространства) идут более медленные процессы, сопровождающиеся упрочнением, в том числе перераспределение воды между гигроскопической и кристаллизационной формами. Механизмы таких процессов – перекристаллизация в жидкой фазе и топохимические фазовые переходы между различными кри-

Рис. 4. Рентгенограмма образца фосфогипса, увлажненного водными растворами мочевины (созревание гранул на воздуxe); * – мочевина, о – CaSO₄×4CO(NH₂)₂

Рис. 5. Рентгенограмма порошка фосфогипса, увлажненного водными растворами (созревание гранул на воздухе); о – CaSO₄×2H₂O, * – CaSO₄×0,5 H₂O

Рис. 6. Рентгенограмма порошка фосфогипса, увлажненного водными растворами (созревание гранул во влажной атмосфере); * - CaSO₄×2H₂O, о - CaSO₄×0,5 H₂O

сталлическими формами сульфата кальция. В гранулах, полученных во влажной атмосфере в отсутствие мочевины, как следует из данных фазового рентгеновского анализа, обнаружены различные формы сульфата кальция, но основной формой на поздних стадиях созревания является дигидрат. При сохранении постоянной общей влажности в течение нескольких часов в гранулах постепенно возрастает доля кристаллизационной воды, в частности за счет топохимического превращения $CaSO_4 \times 0.5H_2O$ в $CaSO_4 \times 2H_2O$. Начальная стадия появления дигидрата - кластеризация с образованием зародышей дигидрата в водной фазе или на поверхности кристаллов полугидрата. Кристаллы дигидрата, прорастая в поровое пространство и в окружающие кристаллы полугидрата сульфата кальция, образуют жесткий каркас, обеспечивающий прочность гранул. Увеличение доли кристаллов дигидрата относительно полугидрата приводит к росту прочности гранул по мере их дозревания во влажной атмосфере. В случае введения мочевины в раствор, увлажняющий фосфогипс, прочность обусловлена прежде всего снижением порозности продукта. Кроме того, в присутствии мочевины идут процессы образования дигидрата и кристаллического кристаллосольвата CaSO₄×4CO(NH₂)₂. Не исключено, что мочевина может менять условия нуклеации в гранулах. Например, входя в координационную сферу ионов кальция и образуя комплексы типа CaSO₄×4CO(NH₂)₂, она, возможно, препятствует образованию зародышей дигидрата и способствует образованию зародышей у-ангидрита и его гидратов. Наряду с дигидратом сульфата кальция безводный CaSO₄, как следует из табл. 4, Таблица 4

Плотность и твердость различных форм сульфата кальция

Форма сульфата кальция	<i>d</i> , кг\м ³	Твердость*
CaSO ₄ . (ангидрит)	2900-3000	3,5–4
CaSO ₄ ×0,5H ₂ O	2300	<1,5
CaSO ₄ ×2H ₂ O (гипс)	2500-2700	1,5–2

·*Твердость по минералогической шкале.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Фирсова Л.П.*// Вестн. Моск. ун-та. Сер. 2. Химия. 2003.**44.** С. 352.
- 2. *Фирсова Л.П.*// Способ получения гранулированного комплексного удобрения. АС СССР № 1724655,1989 // Б.И.1992. № 13.
- 3. Фирсова Л.П, Мелихов И.В., Голубев А.А. // Способ получения гранулированного удобрения. АС СССР. №1724654. 1989 // Б.И. 1992, № 13.
- 4. *Melikhov I.V., Rudin V.N., Vorob eva L.J. //* Mendeleev Comm. 1991. **1** . P. 33.
- Хасанов Р.А., Низамутдинов Н.М., Хасанова Н.М., Губайдуллин А.Т., Винокуров В.М. // Кристаллография. 2008. 53. С. 853.

также способен обеспечивать более высокую по сравнению с полугидратами твердость и прочность гранул. Для более полного изучения механизма влияния мочевины на прочность гранул требуются дополнительные исследования (в ее присутствии) процессов перекристаллизации и топохимических переходов между кристаллическими формами сульфата кальция.

Автор искренне благодарен сотрудникам химического факультета МГУ Ю.А. Великотному и Д.А. Русанову за полученные ими рентгенограммы.

- 6. *Фирсова Л.П.* // ЖПХ. 2004. **77**. С. 179.
- 7. Бердоносова Д.Г., Бурлакова Е.В., Ясенкова М.А., Иванов Л.Н., Мелихов И.В.// ЖПХ. 1989. **62**. С. 245.
- Мелихов И.В., Бердоносова Д.Г., Бурлакова Е.В., Фадеев В.В. // Радиохимия. 1990. 32. С. 44.
- 9. *Фирсова Л.П.* // Вестн. Моск. ун-та. Сер.2. Химия. 2004. **45.** С. 204.
- 10. Фирсова Л.П. // ЖПХ. 2003. 76. С. 353.
- 11. *Мелихов И.В., Рудин В.Н., Воробьева Л.И.//* Неорганические материалы. 1988. **24**. С. 448.
- 12. Фирсова Л.П. // ЖПХ. 2006. **79.** С. 2049.

Поступила в редакцию 20.05.09

COMPRESSION STRENGTH OF THE GRANULS ON BASE CRYSTALLOSOLVATES OF CALCIUM SULFATE

L.P. Firsova

(Division of Radiochemistry)

It was investigated carbamide addition effect on the phosphogypsum granuls compression strength. X-ray diffraction analysis was demonstrated, that the carbamide and the calcium sulfate produce crystals solvate $CaSO_4.4CO(NH_2)_2$ in the granuls. Due to the fact, that the granuls pore volume are filled with crystallized solvate $CaSO_4.4CO(NH_2)_2$ and carbamide, the carbamide addition in wet phosphogypsum provides a high compression strength of the granuls. Furthermore, the strengthening process is accelerating in the presence of the carbamide addition in the granuls.

Key words: phosphogypsum, granuls, compression strength.

Сведения об авторе: Фирсова Людмила Порфирьевна – вед. науч. сотр. кафедры радиохимии химического факультета МГУ, докт. хим. наук (939-32-20).