УДК 538.956.406: 547.42

РАВНОВЕСНЫЕ ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА БУТАНДИОЛОВ

В.И. Журавлев, Т.М. Усачева

(кафедра физической химии; e-mail: zhura-061@yandex.ru)

Приведены экспериментальные исследования статической диэлектрической проницаемости ε_s для 1,3-, 1,4- и 2,3-бутандиолов в интервале температур от 283 до 423 К на частоте 1 МГц и плотности р. В рамках теории Онзагера–Кирквуда–Фрелиха рассчитан экспериментальный фактор корреляции $g_{_{3ксn}}$, характеризующий корреляцию ориентаций молекул в жидкости вследствие короткодействующих ориентирующих межмолекулярных взаимодействий. По его величине судят о характере ближнего ориентационного порядка в жидкости.

Ключевые слова: бутандиолы, статическая диэлектрическая проницаемость, фактор корреляции, плотность, дипольный момент.

В последние годы в связи с развитием химии растворов многие жидкие системы находят широкое применение в качестве конструктивных и функциональных материалов [1]. Одна из первоочередных задач исследователей этого направления заключается в разработке подходов, позволяющих анализировать и предсказывать свойства жидких систем на молекулярно-структурном уровне. При изучении кинетики молекулярных процессов весьма эффективна диэлектрическая радиоспектроскопия (ДРС), благодаря ее уникальным возможностям в отношении перекрываемого диапазона частот и значительным успехам в разработке ее теоретических основ. Более того, в процессе развития и становления ДРС возник ряд модельных представлений, широко используемых и в других методах. Степень адекватности этих представлений действительности определяется в первую очередь объемом и достоверностью экспериментального материала. Для построения моделей жидкого состояния вещества очень важно иметь максимально точные экспериментальные данные в широком диапазоне значений частоты и температуры.

Настоящая работа посвящена исследованию многоатомных спиртов, а также молекулярных механизмов процессов, протекающих в ходе теплового движения [2–3]. Бутандиолы относятся к числу жидкостей, молекулы которых могут принимать участие в создании сетчатых структур. Существует большое разнообразие этих структур в жидкости, поскольку, благодаря наличию в молекуле двух гидроксильных групп, бутандиолы способны к образованию межмолекулярных и внутримолекулярных водородных связей. Метод ДРС позволяет изучать молекулярную структуру таких жидкостей и процессы ее перестройки [4–5].

В настящей работе изложены результаты экспериментального исследования равновесных свойств 1,3-, 1,4- и 2,3-бутандиолов. Методики измерений статической диэлектрической проницаемости ε_s и плотности ρ приведены в [6].

Экспериментальная часть

Физико-химические свойства выбранных для работы веществ (1,3-, 1,4- и 2,3-бутандиолов) после осушки и фракционной перегонки в вакууме представлены в табл. 1.

Метод ДРС, являясь одним из методов исследования строения жидкостей, позволяет описывать молекулярную структуру в рамках модели Онзагера–Кирквуда–Фрелиха [2, 5–6, 8]:

$$g_{_{3KC\Pi}} = \frac{9V_m kT}{4\pi N_A \mu_v^2} \times \frac{(\varepsilon_s - \varepsilon_\infty)(2\varepsilon_s + \varepsilon_{\infty,\text{de}\varphi})}{\varepsilon_s(\varepsilon_{\infty,\text{de}\varphi} + 2)^2}, \quad (1)$$

где ε_s – статическая диэлектрическая проницаемость, μ_v – дипольный момент молекулы в вакууме, V_m – молярный объем, $k_{\rm E}$ – постоянная Больцмана, $N_{\rm A}$ – число Авогадро, T – температура, ε_{∞} – диэлектрическая проницаемость, обусловленная деформационной поляризацией.

В работе [9] нами было показано, что основная неточность при расчете фактора корреляции *g* определяется выбором метода расчета ε_{∞} и значения μ_{ν} . Для расчета деформационной диэлектрической проницаемости ε_{∞} обычно используют уравнение

Вещество	Тки	1		n _D	ρ		
	эксперимент	литература [7]	эксперимент	литература [7]	эксперимент	литература [7]	
2,3-Бутандиол	91–91,5 ^{23**}	182,5 ^{760**}	1,4310 ^{25*}	1,4310 ^{25*}	0,988 ^{25*}	1,0033 ^{25*}	
	-	86 ^{16**}	_	_	_	_	
1,4-Бутандиол	120 ^{10**}	120 ^{10**}	1,4470 ^{20*}	1,4467 ^{20*}	1,016 ^{20/4*}	1,020 ^{20/4*}	
1,3-Бутандиол	120-120,5 ^{25 **}	207,5 ⁷⁶⁰	1,4399 ^{20*}	1,4401 ^{20*}	1,0043 ^{20*}	1,0041 ^{20*}	
	105-106 ^{10**}	109 ^{14**}	-	-	-	-	

Физико-химические свойства исследованных веществ

*Температура в градусах Цельсия ; **давление в мм рт. ст.

$$\varepsilon_{\infty} = 1, 1 n_D,$$
 (2)

где n_D – показатель преломления, или уравнение

$$\varepsilon_{\infty} = (V_m + 2P_{\infty}) / (V_m - P_{\infty}), \qquad (3)$$

где P_{∞} – значение молярной деформационной поляризации, вычисляемое по аддитивной схеме на основании данных о поляризации связей. В настоящей работе для определения значения ε_{∞} мы использовали уравнение (3) и значения поляризации связей, предложенные в [10]:

$$P_{\infty} = 4,76n_{\text{C-O(OH)}} + 1,22 n_{\text{C-C}} + 1,70 n_{\text{C-H}},$$

где n_i – число связей соответствующего типа. Рассчитанные значения P_{∞} составляли 26,78 см³ /моль.

Дипольный момент для 1,4-бутандиола, равный 2,46 D, взят нами из работы [11]. В случае 1,3-бутандиола среднее значение дипольного момента сравнивалось с дипольным моментом 1,3-пропандиола, так как формально 1,3-бутандиол может быть получен замещением атомов водорода в молекуле 1,3-пропандиола на группу CH₃ [12]. В этой же работе показано, что на величину дипольного момента β-диолов (1,3-; 2,4-) большое влияние оказывает внутримолекулярная водородная связь. Среднее значение дипольного момента β -диолов $\mu_{\nu} = 2,7 D (2,4-2,9 D)$. Мы для вычислений взяли величины дипольного момента $\mu = 2,4 D$ и $\mu = 2,46 D$ [12]. В литературе нам не удалось обнаружить экспериментального значения дипольного момента µ для 2,3-бутандиола. По аналогии с пентандиолами, мы взяли значение µ, равное 2,13 D [13]. Представляет интерес рассмотреть работу [14], в которой авторы выполнили конформационный анализ в рамках теории функционала плотности

для изомеров бутандиолов при 298,15 К. С учетом статистических значений веса наиболее стабильных изомеров были рассчитаны средние значения энтальпии для каждого изомера в газовой фазе. Комбинируя эти результаты с экспериментальными значениями энтальпии испарения при 298,15 К, мы определили энтальпию для каждого из изомеров изучаемых бутандиолов в жидком состоянии. Мы провели также оценку дипольных моментов 2,3-бутандиола с учетом различных конформаций молекул. В результате этого исследования для 2,3-бутандиола получено значение дипольного момента µ, равное 2,54 D, что коррелирует с величиной $\mu = 2,53 D$ для гош-конформера tGg'изомера (R,S)-2,3-бутандиола [14]. Данные, полученные в результате эксперимента и расчета, представлены в табл. 2-4.

Обсуждение результатов

Полученные нами экспериментальные данные коррелируют с результатами работ [8, 17, 18]. Это относится в первую очередь к экспериментально измеренным значениям плотности (ρ) и статической диэлектрической проницаемости (ε_{c}).

В работе [9] мы уже отмечали, что для корректной интерпретации значений фактора корреляции $g_{3\kappa cn}$ необходимо учитывать, что молекулы диолов могут иметь существенно различающиеся конформации, дипольные моменты которых также значительно отличаются. Можно с большой долей вероятности полагать, что энергетически выгодные конформации, для которых получены значения дипольного момента в газовой фазе, оказываются совершенно другими в чистой жидкости. В работе [2] нами было отмечено,

Таблица 1

Таблица 2

Т	ρ	V _m	ε∞	ε _s	$g(\mu_v=2,4\ D)$	μ_{g}^{2}	μg	$g(\mu_v=2,46D)$
293	1,006	89,58	2,28	29,45	2,31	13,309	3,648	2,19
303	0,999	90,21	2,27	27,92	2,28	13,187	3,631	2,18
313	0,991	90,94	2,25	26,27	2,25	12,972	3,602	2,14
323	0,983	91,68	2,24	24,86	2,22	12,823	3,581	2,13
333	0,975	92,43	2,22	23,68	2,21	12,750	3,571	2,11
343	0,967	93,20	2,21	22,59	2,20	12,685	3,562	2,09
353	0,960	93,88	2,20	21,41	2,16	12,497	3,535	2,06
363	0,952	94,66	2,18	20,41	2,15	12,401	3,522	2,05
373	0,944	95,47	2,17	19,41	2,12	12,264	3,502	2,02
383	0,936	96,28	2,16	18,36	2,08	12,048	3,471	1,99
393	0,928	97,11	2,14	17,50	2,07	11,924	3,453	1,97
403	0,920	97,96	2,13	16,64	2,04	11,760	3,429	1,95
413	0,912	98,82	2,12	15,82	2,00	11,589	3,404	1,91
423	0,905	99,58	2,10	15,00	1,97	11,354	3,370	1,88

Значения плотности ρ (г/см³), статической диэлектрической проницаемости ε_s, деформационной диэлектрической проницаемости ε_∞ и фактора корреляции Кирквуда g_{эксп} при разных значениях дипольного момента μ_ν 1,3-бутандиола

Таблица З

Значения плотности ρ (г/см³), статической диэлектрической проницаемости ε_s, деформационной диэлектрической проницаемости ε_∞ и фактора корреляции Кирквуда g_{эксп} при разных значениях дипольного момента μ_ν 1,4-бутандиола

Т	ρ	V _m	ϵ_{∞}	ε _s	g(µ _v =2,46D)	μ^2_{g}	μ _g	g(µ _v =2,4D)	μ_{g}^{2}	μ _g
293	1,020	88,35	2,30	31,70	2,31	14,00	3,74	2,40	14,00	3,74
303	1,014	88,86	2,29	30,20	2,30	13,92	3,73	2,42	13,83	3,72
313	1,007	89,49	2,28	28,72	2,28	13,82	3,72	2,40	13,64	3,69
323	1,000	90,12	2,27	27,23	2,26	13,68	3,70	2,37	13,45	3,67
333	0,993	90,76	2,26	25,27	2,18	13,20	3,63	2,28	13,21	3,63
343	0,986	91,40	2,24	23,91	2,15	12,99	3,61	2,26	12,99	3,60
353	0,979	92,05	2,23	22,77	2,13	12,87	3,59	2,23	12,85	3,58
363	0,972	92,72	2,22	21,64	2,10	12,70	3,56	2,20	12,67	3,56
373	0,965	93,39	2,21	20,50	2,06	12,49	3,53	2,16	12,44	3,53
383	0,958	94,07	2,19	19,36	2,02	12,22	3,50	2,12	12,23	3,50
393	0,951	94,76	2,18	18,41	1,99	12,04	3,47	2,09	12,03	3,47
403	0,944	95,47	2,17	17,59	1,97	11,92	3,45	2,06	11,90	3,45
413	0,936	96,28	2,16	16,68	1,94	11,71	3,42	2,02	11,67	3,42
423	0,929	97,01	2,14	15,73	1,89	11,41	3,38	1,98	11,41	3,38

Таблица 4

Т	ρ[15–16]	V _m	£∞	ε _s	g (μ _v =2,13 D)	μ^2_{g}	μg	g ($\mu_g = 2,54D$)	μ^2_{g}	μg
283	1,0054	89,636	2,275	22,60	2,145	9,734	3,120	1,509	9,734	3,120
293	0,9970	90,391	2,260	21,48	2,138	9,699	3,144	1,503	9,699	3,114
298	0,9928	90,774	2,253	20,91	2,130	9,662	3,108	1,498	9,662	3,108
303	0,9885	91,168	2,245	20,44	2,131	9,667	3,109	1,498	9,667	3,109
313	0,9810	91,865	2,232	19,45	2,117	9,604	3,099	1,498	9,604	3,099
323	0,9716	92,754	2,215	18,45	2,101	9,534	3,088	1,478	9,534	3,088
333	0,9632	93,563	2,200	17,73	2,109	9,569	3,093	1,483	9,569	3,093
343	0,9548	94,386	2,186	16,95	2,103	9,540	3,089	1,479	9,540	3,089
353	0,9463	95,234	2,171	16,00	2,066	9,374	3,062	1,453	9,374	3,062
363	0,9379	96,087	2,157	15,45	2,079	9,431	3,071	1,462	9,431	3,071
373	0, 9294	96,966	2,142	14, 73	2,061	9,351	3, 058	1,449	9,351	3,058
383	0,9210	97,850	2,128	14,14	2,057	9,331	3,055	1,446	9,331	3,055
393	0, 9125	98,762	2,114	13, 36	2,015	9,144	3, 024	1,417	9,144	3,024
403	0,9041	99,679	2,100	12,86	2,014	9,138	3,023	1,416	9,138	3,023
413	0,8956	100,625	2,086	12,23	1,985	9,004	3,001	1,396	9,004	3,001
423	0,8872	101,578	2,072	11,64	1,955	8,870	2,978	1,375	8,870	2,978

Значения плотности ρ (г/см³), статической диэлектрической проницаемости ε_s, деформационной диэлектрической проницаемости ε_s и фактора корреляции Кирквуда g_{эксп} при разных значениях дипольного момента μ_w 2,3-бутандиола

что в жидкости все конформации находятся в динамическом равновесии, но с повышением температуры это равновесиие нарушается. Процентное содержание одних конформеров становится больше, а других меньше. Таким образом, фактор корреляции может отражать более сложные процессы, чем это принято обычно отмечать. Из табл. 2–4 видно, что использование разных значений μ_v приводит к заметным изменениям $g_{\rm эксп}$, поэтому в данном случае можно анализировать поведение среднестатистического квадрата дипольного момента молекулы $< \mu_g^2 >$. Поскольку

$$g_{_{\mathfrak{I}\mathfrak{K}\mathfrak{C}\mathfrak{I}}} = \frac{\langle \mu_g^2 \rangle}{\mu_v^2},\tag{4}$$

то значение произведения $g_{3\kappa cn} \cdot \mu^2_{\nu}$ не зависит от выбора вакуумного дипольного момента, а следовательно, предоставляется возможность анализировать дипольный момент молекулы в жидкости (μ_{o}).

Необходимо отметить, что традиционно по значению величины $g_{3\text{ксп}}$, если $g_{3\text{ксп}} > 1$, делают вывод

о премущественно параллельной ориентации дипольных моментов, а это обычно соответствует образованию цепочечных ассоциатов. Если $g_{_{\rm ЭКСП}} \approx 1$, то это может означать неупорядоченную ориентацию дипольных моментов или образование циклических ассоциатов. Как видно из табл. 1-3, фактор корреляции бутандиолов $(g_{_{\rm ЭКСП}})$ имеет плавную монотонную зависимость от температуры, оставаясь во всем интервале значительно больше 1. Уменьшение $g_{_{3\mathrm{KCI}}}$ с увеличением температуры выражено слабее для диолов, чем для одноатомных спиртов [9]. Это может свидетельствовать о существовании пространственных сеточных структур, которые разрушаются в меньшей степени, чем линейные ассоциаты. Уменьшение $g_{\rm эксп}$ с температурой минимально в случае 2,3-бутандиола. Это связано, по всей видимости, со значительной долей внутримолекулярных связей, которая мало меняется при изменении температуры [2, 9, 14]. Значение <µ²_o> бутандиолов с ростом температуры уменьшается. Это позволяет полагать, что в бутандиолах существует ближний ориентационный порядок с тенденцией к параллельной ориентации дипольных моментов соседних молекул. Можно полагать, что в бутандиолах основными фрагментами структуры являются как линейные и разветвленные цепочки, так и структуры типа пространственной сетки, причем их равновесная концентрация и степень ассоциации существенно зависят от температуры. Следовательно, величина

СПИСОК ЛИТЕРАТУРЫ

- 1. Неводные растворы в технике и технологии / Под ред. Г.А. Крестова. М., 1991.
- 2. Журавлев В.И. // ЖФХ. 1992. 66. C. 225.
- 3. Усачева Т.М., Журавлев В.И., Лифанова Н.В. // ЖФХ. 1998. 17. С. 116.
- 4. Журавлев В.И., Усачева Т.М.. Лифанова Н.В. // ЖФХ.1998. 72. С. 132.
- Zhuravlev V.I., Lifanova N.V, Usacheva T.M. // J. Mol. Lig. 2005. 120. P. 107.
- Grineva O.V., Zhuravlev V.I., Lifanova N.V. // J. Chem. Eng. Date. 1996. 41. N 2. P. 155.
- Краткий химический справочник / Под ред. В.А. Рабиновича. Л., 1978.
- 8. *Grineva O.V., Zhuravlev V.I.* // J. Chem. Eng. Date.1996. **41.** N 3. P. 604.
- 9. Журавлев В.И., Гринева О.В., Лифанова Н.В.и др. // ЖФХ. 1997. **71.** С. 2282.

<ррафикации странати страна страна странатически странат

- 10. *Левин В.В.* Физика и физикохимия жидкостей. М., 1972. Вып. 1. С. 176.
- 11. Усачева Т.М., Лифанова Н.В., Журавлев В.И. и др. //ЖХФ. 2002. **76.** С. 2154.
- 12. Buc H. // Ann.Chem.(Paris).1963. N 7-8. P. 409.
- 13. Davidson D.W. // Canadian J. Chem. 1961. **39.** P. 2139.
- 14. Jesus A.J.Lopes, Rosado Mario T.S., Reva I. et. al. // J. Phys. Chem. A 2003. **107.** P. 3891.
- 15. Хемраев Б. // Изв. АН СССР. Сер. Физ. 1976. № 4 С. 50.
- 16. Дуров В.А., Зияев Г.М., Шахпаронов М.И. // Вестн. Моск. ун-та. Сер. 2. Химия. 1984. **25.** С. 248.
- 17. George J., Sastry N.V. // J. Chem. Eng. Date. 2003. 48. P. 1529.
- Wang F., Pottel R., Kaatze U. // J. Phys. Chem. B. 1997. 101. P. 922.
- 19. Журавлев В.И, Усачева Т.М. // Вестн. Моск. ун-та. Сер. 2. Химия. **51.** С. 91.

Поступила в редакцию 16.02.09

EQUILIBRIUM DIELECTRIC PROPERTIES OF BUTANEDIOLS

V.I. Zhuravlev, T.M. Usacheva

(Division of Physical Chemistry)

Experimental data on static dielectric permittivity (ε_s) determined at 1 MHz and density (ρ) are presented in the temperature range from 283 to 423 K for 1,3-, 1,4- and 2,3-butanediols. Values of experimental correlation factor, g_{exp} , are calculated according to the Onsager-Kirkwood-Frohlich theory. They are used for discussion of local orientational order of molecules in the investigated liquids.

Key words: butanediols, static dielectric permittivity, correlation factor, density, dipole moment.

Сведения об авторах: *Журавлев Владимир Иванович* – вед. науч. сотр. кафедры физической химии химического факультета МГУ, канд. физ.-матем. наук (zhura-061@yandex.ru); *Усачева Татьяна Михайловна* – ст. науч. сотр. кафедры физической химии химического факультета МГУ, канд. физ.-матем. наук (8(495)9391455).