УДК 539.122: 534.242+539.219.1

ДИАМАГНИТНЫЕ ЗОНДОВЫЕ АТОМЫ ОЛОВА-119 В МАГНИТОУПОРЯДОЧЕННЫХ ФЕРРИТАХ СО СТРУКТУРОЙ ТИПА БРАУНМИЛЛЕРИТА

И.А. Пресняков, К.В. Похолок, А.В. Соболев

(кафедра радиохимии; e-mail: iap@radio.chem.msu.ru)

Методом зондовой мессбауэровской спектроскопии на ядрах ¹¹⁹Sn исследовано влияние природы щелочноземельного катиона A²⁺ = (Ca, Sr) в ферритах A₂Fe₂O₅, обладающих упорядоченной структурой типа браунмиллерита, на формирование структуры локального окружения и магнитные сверхтонкие взаимодействия зондовых атомов олова.

Ключевые слова: мессбауэровская спектроскопия, ферриты кальция и стронция, зондовые атомы, сверхтонкие взаимодействия, локальная структура гетеровалентных примесных атомов.

В настоящее время мессбауэровская спектроскопия по праву может считаться одним из наиболее эффективных современных методов диагностики локальной структуры и электронного состояния атомов в твердых телах. Большое распространение получил зондовый вариант мессбауэровской спектроскопии, суть которого состоит в исследовании параметров сверхтонких взаимодействий примесных (зондовых) мессбауэровских атомов, введенных в микроколичествах в структуру изучаемого соединения. Особенно эффективным оказывается применение примесных диамагнитных катионов ¹¹⁹Sn для исследования магнитноупорядоченных веществ за счет спиновой поляризации ¹¹⁹Sn, приводящей к появлению в мессбауэровских спектрах магнитной сверхтонкой структуры [1, 2].

Настоящая работа посвящена сравнительному мессбауэровскому исследованию структуры локального окружения и комбинированных сверхтонких взаимодействий зондовых атомов ¹¹⁹Sn в слоистых ферритах $A_2Fe_2O_5$ (A = Ca, Sr), имеющих структуру типа браунмиллерита. При использовании в качестве источников информации зондовых атомов, обладающих отличными от атомов исследуемого соединения кристаллохимическими характеристиками (электронная конфигурация, ионный радиус, формальная степень окисления и т.д.), приходится с осторожностью использовать информацию, получаемую из их спектров. Комбинированное исследование сверхтонких взаимодействий примесных атомов ¹¹⁹Sn и атомов ⁵⁷Fe, являющихся основными компонентами исследуемых систем, позволяет выяснить, насколько информация,

получаемая из мессбауэровских спектров зондовых атомов, отражает особенности электронного состояния, магнитной и кристаллографической структур исследуемых соединений.

Результаты и их обсуждение

В проведенных ранее исследованиях допированного зондовыми атомами ¹¹⁹Sn двухкальциевого феррита Са₂Fe₂O₅, имеющего структуру типа браунмиллерита, было показано, что ионы Sn(IV) стабилизируются в позициях с октаэдрической кислородной координацей [1, 2]. При температуре ниже температуры Нееля (Т $< T_{N}$) в мессбауэровских спектрах ¹¹⁹Sn наблюдается магнитная зеемановская структура, обусловленная спиновой поляризацией электронных оболочек олова соседними катионами железа [3]. На основании данных исследования твердых растворов Ca₂Fe_{2-x}Sc_xO₅, а также результатов расчетов, выполненных в рамках кластерного варианта МО ЛКАО, были оценены парциальные вклады в сверхтонкое поле на ядрах Sn(IV) от катионов Fe(III) в октаэдрической и тетраэдрической подрешетках феррита [4].

В отличие от двухкальциевого феррита, спектры примесных атомов ¹¹⁹Sn образца Sr₂Fe_{1,98}Sn_{0,02}0₅, измеренные при температуре ниже температуры его магнитного упорядочения $T_N \approx 715$ K (рис. 1, *a*), представляют собой суперпозицию двух зеемановских секстетов с существенно различающимися спектральными вкладами: A₁ = 77% и A₂ = 21%. Небольшая парамагнитная компонента в области нулевых скоростей по своим параметрам $\delta = 0,05$ мм/с и $\Delta = 0,57$ мм/с может быть отнесена к атомам оло-

N, %

a

Скорость , мм/с

Рис. 1. Мессбауэровские спектры ¹¹⁹Sn образца Sr₂Fe_{1.98}Sn_{0.02}O₅ при 80 K (*a*) и 800 K (*б*)

ва, не вошедшим в структуру феррита и выделившимся в виде собственной фазы SnO₂. Значения химических сдвигов $\delta_1 = 0,2$ мм/с и $\delta_2 = 0,4$ мм/с обоих зеемановских секстетов соответствуют ионам четырехвалентного олова и согласуются с соответствующими параметрами для примесных ионов Sn(IV) в структурах других магнитоупорядоченных окислов переходных металлов [5, 6]. Различие в величинах сверхтонких магнитных полей $H_1 = 372$ кЭ и $H_2 = 360$ кЭ, а также знаков величин квадрупольного смещения ($\varepsilon_1 > 0$ и $\varepsilon_2 < 0$) секстетов свидетельствует о стабилизации примесных ионов олова в двух неэквивалентных позициях двухстронциевого феррита. Совпадение знаков квадрупольного смещения ($\varepsilon > 0$) для первого секстета и единственной зеемановской структуры ¹¹⁹Sn в ранее исследованном нами двухкальциевом феррите Ca₂Fe_{1,98}Sn_{0,02}O₅ [1, 2] позволило отнести зеемановскую структуру с большим полем (H_1) к ионам Sn_O(IV), также замещающим катионы Fe_O(III) в октаэдрической подрешетке Sr₂Fe_{1,98}Sn_{0,02}O₅. Противоположное по знаку значение $\varepsilon_2 < 0$ второго зеемановского секстета позволяет

предположить, что соответствующие ему катионы Sn_т(IV) локализованы в тетраэдрической подрешетке двухстронциевого феррита. Этот вывод согласуется ⁵⁷Fe исследуемого образца co спектрами Sr₂Fe_{1 98}Sn_{0 02}O₅, а также ранее полученными данными спектров ⁵⁷Fe незамещенного $Sr_2Fe_2O_5$ [7], представляющих собой при *T* < *T_N* суперпозицию двух зеемановских секстетов катионов $Fe_{O}(III)$ ($\varepsilon_{1} > 0$) и $Fe_{T}(III)$ ($\varepsilon_{2} < 0$) в октаэдрической и в тетраэдрической подрешетках феррита. Спектры ¹¹⁹Sn, измеренные при температуре выше температуры магнитного упорядочения $Sr_2Fe_{1.98}Sn_{0.02}O_5$ (рис. 1, б), представляют собой симметричный уширенный дублет, который может быть представлен в виде суперпозиции нескольких дублетов с близкими значениями химических сдвигов и квадрупольных расщеплений (Δ). В результате разложения "парамагнитного" спектра получены значения сверхтонких параметров, представленные в табл. 1. Большие значения квадрупольных расщеплений для обоих состояний Sn_{OT}(IV) свидетельствуют о значительном искажении их ближайшего анионного окружения в структуре Sr₂Fe_{1.98}Sn_{0.02}O₅. Поскольку решеточная составляющая q_{реш} градиента электрического поля (ГЭП), дающая в случае сферически симметричных катионов ${\rm Sn}^{4+}$ (4 $d^{10}5s^0$) основной вклад в общий ГЭП, практически не зависит от температуры, полученные в парамагнитной области температур значения констант квадрупольного взаимодействия $2\Delta = e^2 q_{\text{pem}}Q (Q - \text{квадрупольный момент ядра}^{119}\text{Sn})$ использовались в качестве фиксированных параметров при обработке магнитно-расщепленных спектров ($T < T_N$) в рамках полного гамильтониана комбинированных электрических и магнитных сверхтонких взаимодействий. Помимо уточненных значений параметров б и Н для подспектров, соответствующих двум позициям катионов Sn_{OT} (IV), были определены углы (q_i) между направлениями действующих на их ядра магнитного (H_i) и электрического (q_i) полей (табл. 1). Полученные значения хорошо согласуются с данными нейтронографического исследования незамещенного феррита Sr₂Fe₂O₅ [8], согласно которым магнитные моменты катионов Fe₀(III) и Fe_T(III) лежат в плоскостях (010), перпендикулярных направлению тетрагонального искажения полиэдров Fe_TO₄ и Fe_OO₆. Этот результат подтверждает сделанный ранее при исследовании Са₂Fe_{1 98}Sn_{0 02}O₅ вывод о том, что, стабилизируясь в решетке феррита, зондовые атомы олова не вносят каких-либо существенных возмущений в его локальную магнитную структуру.

При обсуждении представленных выше экспериментальных данных мы основывались на предположении, что примесные ионы олова замещают в структуре Sr₂Fe₂O₅ катионы Fe(III) в октаэдрической $(Sn_{O}(IV))$ и тетраэдрической $(Sn_{T}(IV))$ подрешетках. Однако до сих пор не затрагивался вопрос о структуре локального анионного окружения ионов Sn_т(IV). Известно, что во всех собственных оксидных фазах катионы четырехвалентного олова всегда занимают позиции исключительно с октаэдрической кислородной координацией. Можно привести лишь два примера оксидных соединений, для которых на основании данных мессбауэровских спектров предполагалось тетраэдрическое кислородное окружение Sn(IV): Са₃Sn₃Ga₂O₁₂ [9] и Са₃In₂Ge_{3-x}Sn_xO₁₂ [10]. Для этих соединений, имеющих структуру типа граната,

Таблица 1

<i>Т</i> _{изм} , (К)	Тип позиции	δ _{Sn} , (MM/c)	Δ, (мм/с)	H _{Sn} , (кЭ)	θ _{Sn} , (°)	A, (%)
800 ($T > T_{\rm N}$)	$\mathrm{Sn}_\mathrm{O}^{4+}$	0,06*	0,84(1)	_	_	77*
	$\mathrm{Sn}_{\mathrm{T}}^{4+}$	0,24*	1,37(1)	_	_	21*
80	Sn _O ⁴⁺	0,20(1)	-0,84*	372(1)	86(10)	77(1)
(<i>T</i> < <i>T</i> _N)	$\mathrm{Sn}_{\mathrm{T}}^{4+}$	0,39(1)	1,37*	360(1)	90(10)	21(2)

Параметры сверхтонких взаимодействий ядер¹¹⁹Sn в структуре образца Sr₂Fe₂O₅ (до восстановительного отжига)

*Соответствующие значения фиксировались при обработке спектров.

мессбауэровские спектры тетраэдрически координированных катионов Sn(IV), характеризуются высоким значением химического сдвига ($\delta \approx 0.86$ мм/с), что согласуется с повышенной величиной степени ковалентности "укороченных тетраэдрических" связей Sn-O. В случае Sr₂Fe_{1.98}Sn_{0.02}O₅ химический сдвиг подспектра, отвечающего катионам Sn_r(IV), имеет существенно меньшее значение б (табл. 1). Кроме того, если бы катионы Sn_т(IV) находились в тетраэдрическом кислородном окружении, то число сверхобменных связей Sn_T-O-Fe_{O(T)}, через которые осуществляется индуцирование на их ядрах сверхтонкого поля $H(Sn_{r})$, должно быть на две меньше, чем в случае катионов Sn_O(IV), локализованных в октаэдрической катионной подрешетке структуры того же феррита. Действительно, согласно данным табл. 1, сверхтонкое поле на ядрах Sn_T(IV) на 12 кЭ меньше соответствующего значения для Sn_O(IV). Однако проведенные нами ранее исследования допированных ¹¹⁹Sn твердых растворов Ca₂Fe_{2-x}Sc_xO₅ показали, что парциальные вклады в $H(^{119}Sn)$ от каждого из парамагнитных катионов Fe_{OT}(III) в среднем составляют 50-60 кЭ [4]. Учитывая, что в магнитной структуре типа браунмиллерита все ближайшие парамагнитные катионы железа имеют одинаковое направление магнитных моментов [8], отсутствие двух косвенных связей Sn_T-O-Fe_T должно было бы приводить к более существенному уменьшению сверхтонкого поля на ядрах Sn_T(IV).

Таким образом, на основании приведенных выше экспериментальных данных более естественно предположить, что, стабилизируясь в тетраэдрической подрешетке $Sr_2Fe_2O_5$, примесные катионы $Sn_T(IV)$ достраивают свое ближайшее анионное окружение до наиболее характерной для них октаэдрической кислородной координации. Приобретая в своем окружении два дополнительных аниона кислорода, катионы Sn_т(IV) становятся связанными уже с шестью парамагнитными катионами железа: $4Fe_{T}(III) + 2Fe_{O}(III)$, что объясняет, в частности, близость значений сверхтонких полей $H(Sn_T)$ и $H(Sn_O)$ (катионы $Sn_O(IV)$ также имеют шесть ближайших парамагнитных соседей: $4Fe_{O}(III) + 2Fe_{T}(III)$). Следует, однако, обратить внимание на необычное для катионов четырехвалентного олова соотношение параметров δ и *H*: большему значению химического сдвига (δ_2) соответствует меньшее сверхтонкое поле (Н₂) (табл. 1). Обычно, увеличение химического сдвига для примесных катионов Sn(IV) в структурах магнитоупорядоченных соединений приводит к возрастанию индуцированного на их

ядрах магнитного сверхтонкого поля, что связывают с ростом степени ковалентности связей Sn-X (увеличение б) и как следствие ростом степени спинового переноса в цепочках Sn–X–M (увеличение H), где X, М - ионы аниона и парамагнитного катиона соответственно [3]. В случае Sr₂Fe_{1 99}Sn_{0 02}O₅ для катионов Sn_т(IV) следует ожидать большей ковалентности связей Sn_T–O (большее значение δ_2), поскольку образовавшиеся из небольших тетраэдрических полиэдров незамещенного феррита октаэдрические полиэдры Sn_TO₆ должны иметь меньший объем по сравнению с "нормальными" октаэдрическими пустотами, занимаемыми катионами $Sn_{O}(IV)$ (меньшее значение δ_{1}). Однако значение сверхтонкого поля на ядрах диамагнитных ионов зависит не только от степени ковалентности связей Sn(Fe)-O, но определяется также углом (ф) в цепочках Sn–O–Fe [11]. Несмотря на то что для обоих типов катионов Sn_{O(T)}(IV) число косвенных взаимодействий Sn_{OT}-O-Fe одинаково, средний угол <ф> в этих связях существенно уменьшается при переходе от полиэдров Sn_OO_6 : < ϕ >_{Sn-O-Fe} = 167° к Sn_TO₆: < ϕ > _{Sn-O-Fe} = 136° [12], что и приводит в конечном счете к наблюдаемому в спектрах уменьшению значения $H(Sn_{O})$ по сравнению с $H(Sn_{T})$.

Одна из возможных причин разного поведения примесных катионов Sn(IV) в изоструктурных ферритах $A_2Fe_2O_5$ (A = Ca, Sr) может быть связана с тем, что различны механизмы фазообразования этих соединений [13]. Согласно [13], образование допированного ¹¹⁹Sn двухкальциевого феррита стехиометрического состава завершается на стадии отжига на воздухе прекурсоров Fe(OH)₃:¹¹⁹Sn и CaCO₃. Напротив, для достижения требуемой кислородной стехиометрии Sr₂Fe_{1.98}Sn_{0.02}O₅ необходимо отжигать образующийся на промежуточной стадии феррит состава Sr₂Fe_{1.98}Sn_{0.02}O_{5.72} при пониженном парциальном давлении кислорода (рис. 2). В работе [14] было показано, что структура Sr₂Fe₂O_{5 72} представляет собой два чередующихся вдоль кристаллографического направления [101] катионных слоя, в первом из которых катионы Fe(IV) занимают позиции с октаэдрической кислородной координацией. Во втором слое половина катионов железа также находится в четырехвалентном состоянии в октаэдрическом кислородном окружении, другая часть стабилизируется в трехвалентном состоянии с анионным окружением, соответствующим тетрагональной пирамиде (рис. 2, а). Можно предположить, что на стадии образования $Sr_2Fe_{1.98}Sn_{0.02}O_{5.72}$ примесные ионы Sn(IV)распределяются по обоим слоям, статистически за-

б

Рис. 2. Схема синтеза и структура ферритов: $a - Sr_2Fe_2O_5$, $\delta - Sr_2Fe_{1,98}Sn_{0,02}O_5$

a

мещая в них изовалентные катионы Fe(IV) с октаэдрическим кислородным окружением. В этом случае две трети из всех примесных катионов Sn(IV) будут находиться в первом слое, а одна треть – во втором. Восстановительный отжиг Sr₂Fe_{1 98}Sn_{0 02}O_{5 72} на третьей стадии приводит к удалению из второго слоя части атомов кислорода, что сопровождается превращением анионных полиэдров с симметрией октаэдра и тетрагональной пирамиды в тетраэдрические полиэдры (рис. 2, б). Однако, учитывая высокое сродство катионов Sn(IV) к кислороду, можно предположить, что после восстановительного отжига в вакууме даже те из них, которые стабилизировались в тетраэдрическом слое, будут сохранять октаэдрическое кислородное окружение. В результате этого в спектре ¹¹⁹Sn феррита $Sr_2Fe_{1.98}Sn_{0.02}O_5$, полученного на последней стадии синтеза, будут наблюдаться две структуры зеемановского расщепления с соотношением площадей $A_1(Sn_0)/A_2(Sn_r) \approx 2$. Следует отметить, что образующиеся в окружении катионов Sn_T(IV) октаэдрические кислородные полиздры сохраняют структурные и магнитные элементы решетки незамещенного феррита. Об этом, в частности, свидетельствует совпадение знаков главных компонент ГЭП на ядрах катионов двух мессбауэровских нуклидов: ⁵⁷Fe_т(III) и ¹¹⁹Sn_r(IV), локализованных в одной подрешетке феррита, но имеющих различную анионную координацию. Кроме того, уже отмечавшееся хорошее согласие углов (0) между направлениями q и H для катионов Sn_r(IV) (θ = 90°) и Fe_T(III) (θ ≈ 87° [7]) указывает на отсутствие существенного возмущения магнитного упорядочения катионов железа в тетраэдрической подрешетке в результате образования в ней полиэдров Sn_TO₆.

Следует также отметить, что известны случаи, когда диамагнитные четырехвалентные катионы ста-

билизировались в тетраэдрической подрешетке структуры браунмиллерита, достраивая при этом свое анионное окружение до октаэдрической симметрии. Это относится к титан-замещенным ферритам Ca₂Fe_{2-x}Ti_xO_{5+γ} [15, 16]. Было показано, что при большом содержании катионов Ti⁴⁺ происходит образование индивидуальных анионупорядоченных фаз с общей формулой Ca_nM_nO_{3n-1} (M = Fe, Ti), различающихся числом и последовательностью чередования "октаэдрических" и "тетраэдрических" слоев.

С целью экспериментального подтверждения правильности отнесения второй зеемановской структуры к октаэдрически коордированным катионам Sn_т(IV), стабилизированным в тетраэдрической подрешетке двухстронциевого феррита, образец $Sr_2Fe_{1.98}Sn_{0.02}O_5$ был отожжен в атмосфере гелия ($Po_2 \approx 10^{-10}$ атм), позволяющей добиться более "жестких" восстановительных условий. Мессбауэровский спектр ⁵⁷Fe полученного образца не претерпевает видимых изменений по сравнению со спектром того же образца до восстановительного отжига. Напротив, в спектре ¹¹⁹Sn "восстановленного" образца (рис. 3, *a*) кроме двух секстетов, отвечающих катионам $Sn_{T}(IV)$ и $Sn_{O}(IV)$, в области малых скоростей появляется дополнительное поглощение, структура которого указывает на наличие сопоставимых по величине комбинированных магнитных и квадрупольных сверхтонких взаимодействий. Из сопоставления данных, приведенных в табл. 1, 2, видно, что относительный вклад секстета, соответствующего катионам Sn_O(IV), до и после восстановления остается практически неизменным, в то время как вклад секстета катионов Sn_T(IV) значительно уменьшается за счет появления третьей формы примесных ионов олова. Этот результат позволяет предположить, что отжиг феррита в "жестких" восстановительных условиях приводит к удалению

T		~					
1	а	0	Л	И	Ц	а	

<i>Т</i> _{изм} , (К)	Тип позиции	δ, мм/с	Δ, мм/с	Н, (кЭ)	θ, град	<i>A</i> , %
80 $(T < T_N)$	$\mathrm{Sn}_\mathrm{O}^{4+}$	0,20(1)	-0,84*	360(1)	86(10)	77(2)
	$\mathrm{Sn}_{\mathrm{T}}^{4+}$	0,39(1)	1,37*	372(1)	90(10)	10(3)
	$\mathrm{Sn}_{\mathrm{T}}^{2+}$	2,40(1)	1,97(1)	36,5(4)	89(4)	11(3)

Параметры сверхтонких взаимодействий ядер ¹¹⁹Sn в структуре образца Sr₂Fe₂O₅ (после восстановительного отжига)

*Соответствующие значения фиксировались при обработке спектров.

Рис. 3. Мессбауэровские спектры ¹¹⁹Sn образца $Sr_2Fe_{1,98}Sn_{0,02}O_5$ после восстановительного отжига, измеренные в большом (*a*) и малом (*б*) диапазонах скоростей

кислорода из ближайшего анионного окружения части катионов Sn_r(IV) с образованием в его тетраэдричес-кой подрешетке новой формы катионов олова с пониженным координационным числом.

Для определения параметров спектра, соответствующего появившейся после восстановления новой форме катионов олова, были проведены измерения в малом диапазоне скоростей (рис. 3, δ). Большое положительное значение химического сдвига дополнительного поглощения (табл. 2) соответствует ионам двухвалентного олова и хорошо согласуется с δ = 2,64 мм/с для катионов Sn(II) в тетрагональной мо-

Рис. 4. Схема изменения локальной структуры катионов $Sn_{T}(IV)/Sn(II)$ при восстановительном отжиге $Sr_{2}Fe_{1.98}Sn_{0.02}O_{5}$

дификации SnO [17]. Следует подчеркнуть, что присутствие магнитной зеемановской структуры в спектрах катионов Sn(II), измеренных в магнитоупорядоченной области температур $Sr_2Fe_{1,98}Sn_{0,02}O_5$, однозначно свидетельствует о стабилизации этих ионов в решетке исследуемого феррита. Известны два примера магнитоупорядоченных соединений (EuS:¹¹⁹Sn [18] и MnS:¹¹⁹Sn [19]), в структуре которых удалось стабилизировать примесные ионы олова в двухвалентном состоянии. В обоих случаях спектры ¹¹⁹Sn(II) характеризуются высокими положительными значениями химических сдвигов $\delta \approx 4,00$ мм/с и практически нулевыми квадрупольными расщеплениями, что указывает на стабилизацию сферически симметричных катионов Sn(II): $5s^2$ в октаэдрических позициях рассматриваемых сульфидов.

В случае $Sr_2Fe_{1,98}Sn_{0,02}O_5$ спектр катионов Sn(II) имеет меньшее значение химического сдвига, но зна-

чительно более высокое квадрупольное расщепление (табл. 2), свидетельствуя тем самым о проявлении стереохимической активности, принадлежащей этим катионам неподеленной электронной пары. Учитывая близость значений параметров спектров для катионов Sn(II) в структурах исследуемого феррита (табл. 2) и тетрагональной модификации SnO [17], можно предположить, что, как и в случае собственного оксида, примесные ионы Sn(II) стабилизируются в sp³d-гибридном состоянии в окружении четырех анионов кислорода, локализованных в вершинах искаженной тетрагональной пирамиды. Определенное из спектров значение угла $\theta \approx 0$ (табл. 2) означает, что направление гибридной орбитали, содержащей "стереохимически активную" неподеленную пару Sn(II), совпадает с направлением сверхтонкого магнитного поля H(Sn(II)).

На основании приведенных выше сверхтонких параметров мессбауэровских спектров можно предложить схему процессов, приводящих к изменению структуры локального окружения катионов Sn_T(IV) при восстановительном отжиге Sr₂Fe_{1.98}Sn_{0.02}O₅. Coгласно рис. 4, в процессе восстановления часть катионов Sn_т(IV) теряет из своего ближайшего окружения два аниона кислорода, переходя при этом в двухвалентное состояние. Удаление из тетраэдрической подрешетки двух атомов кислорода, обеспечивающих в структуре невосстановленного феррита октаздрическую координацию катионов Sn_т(IV), приводит к локализации неподеленной электронной пары Sn(II) вдоль направления [010], которое совпадает с направлением магнитных моментов катионов $Fe_{T}(III)$ и $Fe_{O}(III)$, индуцирующих на ядрах Sn(II) сверхтонкое магнитное поле *H*(Sn(II)).

Окисление $Sr_2Fe_{1,98}Sn_{0,02}O_5$ приводит к полному исчезновению третьей формы катионов олова с одновременным увеличением вклада подспектра, отвеча-

ющего Sn_T(IV). Этот результат свидетельствует о химической обратимости процессов, происходящих в локальном окружении примесных катионов Sn_T (IV)/ Sn(II) в тетраэдрической подрешетке двухстронциево-го феррита.

Таким образом, впервые методом мессбауэровской спектроскопии проведено сравнительное исследование параметров сверхтонких взаимодействий зондовых атомов ¹¹⁹Sn в слоистых ферритах $Ca_2Fe_{1,98}Sn_{0,02}O_5$ и $Sr_2Fe_{1,98}Sn_{0,02}O_5$ со структурой типа браунмиллерита. Показано, что значения параметров сверхтонких взаимодействий зондовых атомов ¹¹⁹Sn отражают особенности занимаемых ими кристаллографических и магнитных позиций в структуре рассматриваемых ферритов. Установлено, что различный характер распределения атомов олова в этих изоструктурных соединениях связан со спецификой их фазообразования.

Проведенные исследования продемонстрировали высокую эффективность метода мессбауэровского диамагнитного зонда, с помощью которого удалось получить ранее недоступную информацию о структуре локального окружения гетеровалентных примесных атомов в анионупорядоченных оксидных системах, имеющую фундаментальное и практическое значение для химии твердого тела. Результаты работы показали, что информация, получаемая из спектров зондовых атомов⁻¹¹⁹Sn, адекватно отражает особенности локальной и магнитной структур исследованных соединений. Сравнительный анализ параметров сверхтонких взаимодействий на ядрах структурообразующих катионов ⁵⁷Fe³⁺ и зондовых катионов олова показывает перспективность применения зондовой мессбауэровской спектроскопии для исследования магнитноупорядоченных систем, не содержащих в своем составе в качестве основных компонентов мессбауэровских нуклидов.

Работа выполнена в рамках Государственного контракта № 02.740.11.0219.

СПИСОК ЛИТЕРАТУРЫ

- Фабричный П.Б. //ЖВХО им. Д.И. Менделеева. 1985. 30. № 2. С. 143.
- 2. *Пресняков И.А., Похолок К.В., Фабричный П.Б.* // Рос. хим. журн. 1996. **40.** № 2. С. 51.
- Пресняков И.А., Похолок К.В., Миняйлова И.Г. и др. //ЖНХ. 1998. 43. С. 1864.
- 4. Minyaylova I. G., Presnyakov I. A., Pkholok K. V., Sobolev A. V., Baranov A.V., Demazeau G., Govor G. A., Vrtcher A. K // J. Solid Statr Chem. 2000. 151. P. 313.
- 5. Evans B. J., Swartzendruber L. J. // Phys. Rev. 1972. B6. P. 223.
- Пресняков И.А., Похолок К.В., Миняйлова И.Г. и др. // Изв. РАН. Сер. физ. 1999. 63. С. 1459.

- 7. Афанасов М.И., Фабричный П.Б. // Рос. хим. журн. 1996. **40.** № 1. С. 54.
- Lyubutin I.S., Toshie Ohya, Dmitrieva T.V., Kazuo Ono. // J. Phys. Soc. Jpn. 1974. 36. P. 1006.
- 9. Fournes L., Potin Y., Grenier J. C., Hagenmuller P. //Revue Phys. Appl. 1989. 24. P. 463.
- Любутин И.С., Милль Б.В.//Физ. тверд. тела. 1967. 9. С. 3145.
- Беляев Л.М., Любутин И.С., Милль Б.В. //Кристаллография. 1970. 15. С. 174.
- 12. Greaves C., Jacobson A. J., Tofield B. C., Fender B. E. F. // Acta Crystallogr. 1975. **B31.** P. 641.

- 13. Moskvin A.S., Ovanesyan N.S., Trukhtanov V.A. // Hyperfine Interact. 1977. 5. P. 13.
- 14. Colville A. // Acta Crystallogr. 1970. B26. P. 429.
- Fournes L., Potin Y., Grenier J.C., Demazeau G., Pouchard M. // Solid State Commun. 1987. 62. P. 239.
- Takeda Y., Kanno K., Takada T., Yamamoto O., Takano M., Nakayama N., Bando Y. // J. Sol. State Chem. 1986. 63. P. 237.
- 17. Grenier J. C., Ghodbane S., Demazeau G., Pouchard M., Hagenmuller P. // Mater. Res. Bull. 1979. 14. P. 831.
- Grenier J. C., Pouchard M., Hagenmuller P. // Structure and Bonding. 1981. 47. P. 1.
- 19. Herber R.H. // Phys. Rev. 1983. 27 B. P. 4013.
- 20. Bykovetz N. // Solid State Commun. 1976. 18. P. 143.
- 21. Ткаченко В.Е., Похолок К.В., Дано М. и др. // ЖНХ. 1995. 40. С. 1996.

Поступила в редакцию 19.03.09

¹¹⁹Sn MOSSBAUER PROBE ATOMS IN ANTIFERROMAGNETIC FERRITES WITH A BROWNMILLERITE-TYPE STRUCTURE

I.A.Presniakov, K.V.Pokholok, A.V. Sobolev

(Division of Radiochemistry)

Mossbauer spectroscopy has been for studying local environment of ¹¹⁹Sn probe atoms within tindoped A_2 Fe₂O₅ (A =Ca, Sr) ferrites with brownmillerite-type structure. In the case of Ca₂Fe₂O₅, the ¹¹⁹Sn spectra recorded below the magnetic ordering temperature (T_N) indicate that Sn⁴⁺ dopant ions are located in sublattice with octahedral oxygen surrounding. On the contrary, the ¹¹⁹Sn spectra of the Sr₂Fe₂O₅ ferrite can be described as a superposition of two Zeeman sextets, which indicate that Sn⁴⁺ dopant ions are located in two non-equivalent crystallographic and magnetic sites. The observed hyperfine parameters were discussed supposing Sn⁴⁺ ions being stabilized in the tetrahedral sublattice complete their nearest oxygen surrounding up to the octahedral oxygen coordination. Annealing of the tin-doped Sr₂Fe₂O₅ simple in helium flux condition leads to formation of divalent Sn²⁺ ions with a simultaneous decrease of the contribution for ¹¹⁹Sn⁴⁺ sub-spectrum. The hyperfine parameters of ¹¹⁹Sn²⁺ sub-spectrum underline that impurity atoms are stabilized in the sp³d – hybrid state in the oxygen distorted tetragonal pyramid. The analysis of the ¹¹⁹Sn spectra indicates a chemical reversibility of the processes Sn²⁺ « Sn⁴⁺ within the tetrahedral sublattice of the brownmillerite-type ferrite.

Key words: *mossbauer spectroscopy, hyperfine interactions, local environment of* 119 *Sn probe atoms.*

Сведения об авторах: Пресняков Игорь Александрович – ст. науч. сотр. кафедры радиохимии химического факультета МГУ, канд. хим. наук (iap@radio.chem.msu.ru); Похолок Константин Владимирович – вед. науч. сотр. кафедры радиохимии химического факультета МГУ, канд. хим. наук (kvp@radio.chem.msu.ru); Соболев Алексей Валерьевич – науч. сотр. кафедры радиохимии химического факультета МГУ, канд. хим. наук.