УДК 661.6:543.544

ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ АНАЛИЗА НЕФТЕПРОДУКТОВ

С.В. Егазарьянц

(кафедра химии нефти и органического катализа; e-mail: egaz@petrol.chem.msu.ru)

Рассмотрено современное состояние проблемы разделения и анализа различных нефтяных фракций методами высокоэффективной жидкостной и капиллярной газовой хроматографии, ИК-спектроскопии и масс-спектрометрии. Описаны основные принципы высокоэффективной жидкостной хроматографии как основного метода разделения нефтепродуктов. Приведены данные по новым высокоэффективным адсорбентам для группового разделения нефтяных фракций. Показаны некоторые методики химического модифицирования отечественных кремнеземов. Описаны методики определения ароматических углеводородов в бензиновых, керосиновых и дизельных фракциях нефти хроматографическими методами.

Ключевые слова: нефть, хроматография, адсорбенты, разделение, бензины, керосины, дизельное топливо.

Современное состояние химико-аналитической техники в нефтехимической промышленности

Современный мир удовлетворяет свои энергетические потребности главным образом за счет использования продуктов нефтепереработки, несмотря на большие успехи в развитии атомной промышленности и гидроэнергетики.

Благосостояние многих людей на Земле прямо или косвенно зависит от таких продуктов, как автомобильный бензин, авиационный керосин дизельное и реактивное топливо. В настоящее время мировые запасы нефти в разведанных месторождениях оцениваются в 143 млрд тонн, из которых на долю стран Ближнего Востока приходится более 94 млрд тонн.

Запасы нефти в разведанных месторождениях России составляют 6,7 млрд тонн, что почти в два раза превышает нефтяные ресурсы США. Годовые объемы добычи сырой нефти в России и США примерно одинаковы (около 350 млн тонн), однако объем переработки этого сырья в США (895 млн тонн) почти в семь раз больше, чем в России (122 млн тонн). Такая диспропорция указывает на значительное отставание нефтеперерабатывающей отрасли в России, что с особой ясностью проявилось после распада СССР, когда большая часть новых и наиболее мощных нефтеперерабатывающих предприятий оказалась в пределах независимых государств, образовавшихся из прежних республик [1].

Анализ итогов десятилетнего периода кризисного состояния и выхода из кризиса российской нефтеперерабатывающей отрасли показал, что в настоящее время в целом по отрасли наметился определенный прогресс в развитии и структуре технологических процессов. Однако очевидно, что для восстановления частично утраченных мировых позиций российской нефтеперерабатывающей отрасли необходимо серьезное обновление технической базы, увеличение объемов и глубины переработки нефти.

Сырая нефть представляет собой многокомпонентную смесь большого числа химических соединений разнообразной природы с преобладанием углеводородов. В составе нефтей разных месторождений обнаружены сотни углеводородов различного строения, многочисленные гетероорганические соединения, комплексные соединения некоторых металлов, например ванадия, и др. По данным компании «Шеврон» (США), сырая нефть содержит десятки тысяч индивидуальных соединений [2]. Даже самые совершенные методы анализа смесей органических соединений, включая газовую хроматографию и высокоэффективную жидкостную хроматографию в сочетании с массспектрометрией, не обеспечивают полного разделения всех компонентов такой сложной системы. В лучшем случае это оказывается возможным лишь для наиболее простых по составу легких фракций нефти. Однако для технической характеристики нефтяного сырья и для его промышленного использования информации о полном покомпонентном составе, как правило, не требуется. Более важной оказывается информация о фракционном составе нефти или продуктов ее переработки. Для определения фракционного состава нефти и нефтепродуктов используют перегонку. В ходе перегонки при постепенно повышающейся температуре

76

отбирают (отгоняют) отдельные части – фракции, каждая из которых характеризуется температурой начала и конца кипения. В условиях промышленного производства осуществляют ректификацию нефти, при этом получают следующие фракции (указана температура начала и конца кипения [3]):

до 180°С – бензиновая фракция,

140-180°С - лигроиновая фракция (тяжелая нафта),

180-240°С – керосиновая фракция,

220–350°С – дизельная фракция (легкий или атмосферный газойль, соляровый дистиллат).

Фракции, выкипающие до 350°С, называются светлыми нефтепродуктами. Фракции, выкипающие при температурах выше 350°С, называются мазутом. Дальнейшую разгонку этого материала осуществляют под вакуумом, отбирая следующие фракции (в зависимости от направления дальнейшего использования):

350-500°С – вакуумный газойль (вакуумный дистиллат),

выше 500°С – вакуумный остаток (гудрон).

Эти фракции используют преимущественно в качестве топлив. Перегонку мазута осуществляют также для извлечения минеральных масел. В этом случае получают следующие фракции:

350–20°С – легкая масляная фракция (трансформаторное масло),

420–450°С – средняя масляная фракция (машинный дистиллат),

450-490°С – тяжелая масляная фракция (цилиндровый дистиллат),

выше 490°С – гудрон.

Фракции, получаемые при перегонке мазута, называют темными нефтепродуктами. Классифицируют и продукты дальнейшей переработки нефти. Относительное содержание светлых и темных нефтепродуктов весьма значительно различается для нефтей из разных месторождений. Так, нефть Ярегского месторождения (Республика Коми) содержит около 19% светлых фракций, а нефть Самотлорского месторождения (Западная Сибирь) – около 59%.

Основные химические элементы, входящие в состав нефтей, – углерод (83–87%) и водород (11,5– 14%). Часто в состав нефти входят также азот, кислород и сера. Основные органические соединения, входящие в состав нефти, – углеводороды различных гомологических рядов (нормальные и разветвленные алканы, цикланы, ароматические углеводороды и др.). Обычно в состав нефтей не входят непредельные углеводороды (олефины). В большинстве случаев в состав нефтей в небольших количествах (на уровне десятых и сотых долей процента) входят циклические соединения с углеродным скелетом, сходным со стероидными соединениями, характерными для живых организмов (стераны, гопаны, тритерпаны и др.). Изучение этих соединений (их называют биомаркерами) проливает свет на целый ряд особенностей образования нефти данного конкретного месторождения [4].

Аналитическое исследование нефти

Газовая хроматография в исследованиях состава нефтей и нефтяных фракций

Анализ сырой нефти и выделенных из нее фракций – исключительно сложная научно-техническая проблема. До 50-х годов XX в. в большинстве случаев не проводили детального определения компонентов, входящих в состав нефтепродуктов, а ограничивались групповыми характеристиками после разделения анализируемого материала на несколько фракций. Помимо перегонки нефти использовали малоэффективный метод колоночной жидкостной хроматографии. Возможности анализа сырой нефти и отдельных нефтяных фракций весьма существенно возросли после возникновения и развития в конце 40-х и в начале 50-х годов прошлого века аналитических методов газовой хроматографии. В 1952 г. были опубликованы первые работы с описанием метода газо-жидкостной хроматографии [5-7], а еще раньше в конце 40-х годов появились работы с описанием оригинального газоадсорбционного метода анализа, названного авторами хроматермографией [8, 9]. Изучение состава нефти и продуктов ее переработки с применением методов газовой хроматографии было начато в середине 50-х годов XX в. как за рубежом [10-13], так и в CCCP [14-21.

Открытие капиллярной хроматографии в 1956 г. [22, 23] существенно расширило аналитические возможности газовой хроматографии и позволило анализировать существенно более сложные объекты. Чрезвычайно высокие требования к анализу нефтей и нефтяных фракций в значительной мере способствовали развитию высокоэффективных вариантов капиллярной хроматографии. Наконец, в начале 60-х годов XX в. был разработан наиболее мощный аналитический метод, представляющий комбинацию высокоэффективной капиллярной хроматографии и массспектрометрии и названный поэтому хромато-массспектрометрией [24–31]. В настоящее время анализ нефтей и нефтяных фракций этим методом дополняется использованием электронно-вычислительной техники, обеспечивающей большие возможности регистрации и анализа как получаемых хроматограмм, так и масс-спектров, каждого из зарегистрированных на них компонентов [32–35].

Высокоэффективная жидкостная хроматография

Применение газовой хроматографии для анализа нефти и ее отдельных фракций ограничено вследствие того, что лишь часть веществ, входящих в состав нефти, обладает достаточной летучестью [36]. Это обстоятельство обусловило интенсивное развитие в конце 60-х годов XX в. различных вариантов высокоэффективной жидкостной хроматографии (ВЭЖХ). В самых первых работах по этому прогрессивному направлению объектами исследования стали нефтепродукты. Следует отметить, что работы основателя хроматографического метода М.С. Цвета обладали практически всеми чертами развитого позднее метода высокоэффективной жидкостной хроматографии [37–39].

Преимущества ВЭЖХ исследователи усматривали в том, что разделение в этом методе осуществляется, в отличие от газовой хроматографии, при низких температурах, чаще всего при температурах ниже температуры кипения растворителя, применяемого в качестве подвижной фазы [44-46]. Однако в жидкостной хроматографии существенно более трудным оказывается высокочувствительное детектирование разделенных фракций. Для решения этой проблемы были предложены многочисленные детектирующие системы, включающие устройства, регистрирующие поглощение ультрафиолетовых лучей [47], колориметры [48], электрохимические детекторы [49], рефрактометры [50, 51], спектрофотометры [52] и флуоресцентные детекторы [53]. Следует отметить, что в настоящее время из всего многообразия изученных детектирующих систем широкое применение находят детекторы, измеряющие поглощение УФ-излучения и в меньшей степени изменения показателя преломления элюата, покидающего хроматографическую колонку. В то же время для определения микропримесей неорганических веществ в нефтях и нефтепродуктах находят применение такие специфические химикоаналитические методы, как атомно-абсорбционная спектрометрия [52-53] и измерение хемилюминесценции возбужденных органических молекул (озоновые хемилюминесцентные детекторы) [54–57].

Имеется достаточно большое число работ, в которых метод ВЭЖХ использовали для разделения основных групп соединений, входящих в состав природных нефтей и нефтяных фракций. Так, разделение групп насыщенных и ароматических углеводородов было проведено в работе [58] на колонке с оксидом алюминия с применением детектора по диэлектрической проницаемости. В работах [59–62] было осуществлено достаточно сложное разделение ряда смесей нефтяных углеводородов различной природы, в том числе моно- и бициклических ароматических углеводородов в прямогонных бензинах.

В работе [63] было проведено групповое разделение алифатических и ароматических, в том числе полициклических, углеводородов из высококипящих фракций нефти на колонке с двухслойным заполнением: ее первая по потоку элюента половина была заполнена оксидом алюминия, а вторая половина – силикагелем. Элюентами служили смеси различного состава из пентана, бензола, диэтилового эфира и метанола. Разделенные фракции далее исследовали различными методами, включавшими спектрофотометрию, ядерный, магнитный резонанс, масс-спектрометрию и ситовую (эксклюзионную) хроматографию.

Полиароматические соединения, выделенные из тяжелых фракций нефти, исследовали в работе [64]. При этом проводили градиентное элюирование в системе гексан-циклогексан-хлороформ-метанол с регистрацией результатов с помощью УФ-детектора. Разделение высококипящих терфенилов на колонке размером 200×0,2 мм, заполненной оксидом алюминия (50-60 мкм), проводили в работе [65]. Элюентом служил гептан при скорости его протекания 3,04 см/мин. Температура опыта составляла 35,5°С. Для регистрации разделенных фракций был использован УФ-детектор. Сходным образом анализировали сырую нефть на колонке с кизельгелем 60 с выделением фракций н-парафинов, циклопарафинов, ароматических соединений и гетероатомных составляющих [66]. Циклические гетероатомные соединения нефти разделяли на колонках длиной от 30 до 90 см, заполненных оксидом алюминия в кислой, основной и нейтральной формах. Элюентом служили 10%-е растворы диэтилового эфира или хлороформа в пентане [67]. В уже упоминавшейся работе [16] был изучен состав ароматических углеводородов в среднекипящих нефтяных фракциях, выкипающих в пределах 140-280°С. Было показано, что более 90% изученных фракций составляют алкилбензолы. Кроме того, в меньших количествах присутствуют инданы, тетралины и нафталины. Каждая из упомянутых групп соединений представлена весьма значительным числом углеводородов. В течение последующих десятилетий было выполнено множество аналитических исследований сырой нефти и нефтяных фракций, а также продуктов нефтепереработки. Лишь небольшое их число может быть упомянуто в настоящей работе [68–88]. Важно отметить, что эти исследования уже в самые первые годы развития ВЭЖХ выявили необходимость создания качественных адсорбентов путем модификации поверхности материалов, первоначально использованных для наполнения колонок.

Было показано, что пропитка силикагеля водным раствором азотнокислого серебра с последующим высушиванием существенно улучшает селективность адсорбента по отношению к непредельным углеводородам [89–92]. Существенно изменяло селективность адсорбентов по отношению к ароматическим соединениям нанесение слоев тринитрофлуорена или тетрацианэтилена [93–96].

Принципы высокоэффективной жидкостной хроматографии

В течение довольно длительного времени жидкостную хроматографию использовали преимущественно для препаративного разделения разнообразных веществ, применяя колонки диаметром 10–50 мм и длиной от 50 мм до 0,5–1,0 м. При этом использовали адсорбенты с весьма значительным диапазоном размера частиц (от 20–30 до 200–300 мкм) [97–102]. Столь значительные различия в размерах частиц адсорбента существенно уменьшали эффективность используемых колонок. Однако даже в столь несовершенном виде жидкостная хроматография позволяла успешно разделять близкие по своей разделяющей способности другие методы (дистилляцию, ректификацию, экстракцию и др.).

После открытия газовой хроматографии в 1952– 1963 гг. были проведены работы по изучению закономерностей хроматографических процессов с целью выявления путей получения их максимально возможной разделяющей способности [103–106]. Эти исследования выполнялись в основном применительно к газовой хроматографии, однако найденные условия достижения высокой эффективности вполне применимы и к процессам жидкостной хроматографии при должном учете различий в свойствах подвижных фаз. Подвижные фазы в газовых и жидкостных хроматографических процессах различаются в первую очередь по вязкости, т.е. по коэффициентам диффузии. Вязкость газов составляет 10^{-3} – 10^{-4} сПз, вязкость большинства жидкостей находится в пределах 0,2–2,0 сПз, а для таких растворителей, как этиленгликоль она достигает 16,5 сПз. Кроме того, жидкие подвижные фазы отличаются от газообразных малой сжимаемостью, так что в жидкостной хроматографии объем подвижной фазы, покидающей колонку, в большинстве случаев равен объему подвижной фазы, входящей в нее. Возможность разделения с помощью хроматографии той или иной пары близких по свойствам соединений определяется способностью достижения необходимой эффективности разделения за время, допустимое по условиям эксперимента. Время t, за которое хроматографическая зона пройдет колонку длиной L, равно:

$$t = \frac{L}{V} = \frac{L(1+k)}{u},\tag{1}$$

где V – скорость движения хроматографической зоны по колонке, u – линейная скорость движения подвижной фазы, k – коэффициент емкости (коэффициент извлечения или отношение распределения), равный отношению количеств сорбированного вещества в неподвижной и подвижной фазах. Коэффициент k связан с количеством неподвижной фазы в колонке следующим соотношением:

$$k = K \frac{m}{\rho},\tag{2}$$

где m – масса неподвижной фазы в колонке, ρ – ее плотность, K – термодинамический коэффициент распределения сорбата между подвижной фазой и сорбентом при данных условиях эксперимента. В адсорбционной хроматографии величину k обычно выражают в виде коэффициента Генри (Г), равного отношению количества сорбата, адсорбированного 1 г сорбента к его равновесной концентрации:

$$k = \Gamma c_i . \tag{3}$$

Основным параметром, определяющим скорость перемещения хроматографической полосы по колонке, является коэффициент распределения *K*, равный отношению равновесных концентраций сорбата в неподвижной и подвижной фазах. Эта величина может быть определена следующим образом:

$$K = \frac{C_{\rm cr} V_{\rm cr}}{C_{\rm M} V_{\rm M}} = K \frac{V_{\rm cr}}{V_{\rm M}} = K \frac{S_{\rm cr}}{S_{\rm M}} = K\beta, \tag{4}$$

где $C_{\rm ct}$ и $C_{\rm M}$ – концентрация адсорбата в стационарной и подвижной фазах; $S_{\rm ct}$ и $S_{\rm M}$ – доли сечения колонки, занятые соответственно подвижной и неподвижной фазами; $V_{\rm ct}$ и $V_{\rm M}$ – удерживаемый объем в стационарной и подвижной фазах. Доля общего количества пробы, переносимая в каждый момент вре-

мени подвижной фазой, может быть определена следующим образом:

$$\beta = \frac{V_{\text{ct}}}{V_{\text{M}}}.$$
(5)

Отсюда следует, что хроматографическая зона продвигается по колонке со скоростью в (1+k) раз меньшей, чем скорость подвижной фазы. Видно, что полный объем подвижной фазы, требуемый для того, чтобы зона пробы прошла через всю колонку, равен свободному объему колонки плюс тот же объем, умноженный на коэффициент извлечения. Это последнее произведение принято называть исправленным объемом удерживания. Можно показать, что эта величина может быть определена как произведение объема неподвижной фазы в колонке и коэффициента распределения данного вещества.

В том случае, когда в хроматографическом процессе участвуют два вещества с различающимися коэффициентами извлечения, достигаемое разделение характеризуется степенью разделения, равной отношению расстояния между центрами зон этих компонентов (их пиков) к их средней величине

$$R = 2 \frac{V_2 - V_1}{a_{0(1)} - a_{0(2)}}.$$
(6)

Здесь V_1 и V_2 – параметры удерживания двух компонентов, $a_{0(1)}$ и $a_{0(2)}$ – значения ширины соответствующих пиков, измеренные на уровне их оснований [49, 51]. Степень разделения, равная единице, соответствует почти полному разделению двух пиков. Для нужд практического анализа обычно достаточна степень разделения, равная 0,6–0,8.

В связи с тем, что метод хроматографии построен на использовании различий в интенсивности взаимодействия веществ с неподвижной фазой, его результаты будут тем лучше, чем больше будет число элементарных актов перехода молекул разделяемых соединений из подвижной фазы в неподвижную, и обратно. По аналогии с процессом ректификации, где также используются процессы перехода молекул из паровой фазы в жидкую и обратно, мерой числа таких переходов в хроматографии считают величину, называемую числом теоретических тарелок (т.т.). Эту величину можно рассчитать по времени удерживания вещества и ширине его пика, измеренной в тех же единицах:

$$n = 16\left(\frac{V}{a_0}\right)^2 = 5,56\left(\frac{V}{a_{1/2}}\right)^2.$$
(7)

Здесь $a_{1/2}$ – ширина хроматографического пика на середине его высоты [102]. Показано, что число теоретических тарелок, необходимое для разделения двух веществ с коэффициентом селективности α до степени разделения *R*, равно:

$$n_R = (2R\frac{\alpha+1}{\alpha-1})^2 = (\frac{4R}{R_{in}})^2.$$
 (8)

Эти соотношения позволяют оценить число теоретических тарелок, необходимое для разделения двух веществ с известным коэффициентом селективности. Это число быстро растет при приближении α к единице. Так, для разделения двух веществ с $\alpha = 1,5$ до величины R = 1 требуется всего лишь 300 т.т., тогда как при $\alpha = 1,1$ для того же качества разделения потребуется уже более 1700 т.т., при $\alpha = 1,05 - 6700$ т.т., а при $\alpha = 1,01 -$ более 40 тыс. т.т.

Не углубляясь далее в тонкости теории хроматографического разделения очень близких по свойствам веществ, отметим, что в применении к разделению нефтематериалов чаще всего ограничиваются групповым разделением на более или менее широкие фракции, характеризующиеся либо определенными температурными пределами выкипания, либо теми или иными особенностями химического строения (алканы, цикланы, арены и т. д.).

Новые эффективные адсорбенты для групповых разделений нефтяных фракций

Крайняя сложность состава многокомпонентных нефтяных фракций и продуктов нефтепереработки выдвигает на первый план задачу поиска специфических адсорбентов, способных обеспечить разделение нефтепродуктов на группы соединений сходного химического строения (алканы, цикланы, арены, нафталины, фенантрены, иные соединения с конденсированными ароматическими ядрами).

С учетом ряда специфических требований к адсорбентам, связанных с возможностью достижения достаточно высокой эффективности хроматографического разделения, поиск таких адсорбентов целесообразно осуществлять среди продуктов модификации распространенных материалов на основе кремнеземов, широко используемых в жидкостной адсорбционной хроматографии [107, 108]. В качестве исходных наиболее часто используют следующие материалы на основе кремнезема:

силикагель КСК-2 ($S = 350 \text{ м}^2/\text{г}, d_{\text{пор}} = 100 \text{ Å}$), силохром С-80(1) ($S = 65 \text{ м}^2/\text{г}, d_{\text{пор}} = 700 \text{ Å}$), силохром С-80(2) ($S = 80 \text{ м}^2/\text{г}, d_{\text{пор}} = 500 \text{ Å}$).

Выбор вышеперечисленных материалов в качестве исходных для дальнейшей модификации диктуется следующими соображениями. Эти материалы выпускаются промышленностью, они геометрически однородны и легко подвергаются химическому модифицированию. Характеристики хроматографических колонок, заполненных этими адсорбентами, достаточно воспроизводимы. Показано, что при прочих равных условиях хорошая эффективность колонок достигается при использовании адсорбентов с размером пор ≥100 Å, что характерно для перечисленных выше материалов [109]. Установлено, что эти кремнеземы легко модифицируются путем нанесения на их поверхность тонких пленок полимерных материалов или путем замещения ионов водорода поверхностных гидроксильных групп на катионы двух- или трехвалентных металлов (Ca²⁺, $A1^{3+}$, Fe^{3+} и др.). Такого рода модифицирование приводит к существенному изменению адсорбционных характеристик полученных материалов по сравнению с исходными кремнеземистыми адсорбентами, что проявляется в расширении или изменении их диапазона селективности [110, 111].

Перед проведением модификации ионами металлов кремнеземистые материалы подвергали гидроксилированию кипячением в воде или в слабом растворе натриевой щелочи с последующим высушиванием при 150–200°С. Модификации катионами двух- и трехвалентных металлов подвергали в основном силикагель КСК-2 [112, 113].

Пробу силикагеля КСК-2 массой 5 г обрабатывали 20–50 мл раствора соли соответствующего металла, оставляли стоять для полного установления равновесия на 2–4 ч. После этого отгоняли растворитель и оставшийся продукт сушили в течение 2–3 ч при 150°С, а затем прокаливали в муфельной печи при 450–500°С в течение 4–5 ч. Ниже приведено описание конкретных процедур катионной модификации силикагеля КСК-2.

Модифицирование силикагеля КСК-2 катионами кальция

Гидроксилированный и высушенный при 200°С силикагель в количестве 5 г обрабатывали 20 мл 0,1 N раствора Ca(OH)₂ с известной концентрацией ионов кальция. Оставляли стоять на 4 ч при периодическом перемешивании, после чего определяли остаточное количество ионов кальция в растворе методом обратного титрования. По разности исходной и остаточной концентраций определяли количество катионов кальция, вступивших в реакцию замещения с гидроксильными группами поверхности силикагеля. Было установлено, что на 1 м² поверхности силикагеля было связано 8,6 микроэквивалентов кальция, что составляет по массе 0,344 г кальция на 1 г силикагеля. Далее после удаления избыточного раствора модифицированный образец сушили 5 ч при 200°С.

Модифицирование силикагеля КСК-2 катионами алюминия

Гидроксилированный и высушенный при 150°С силикагель в количестве 5 г обрабатывали 50 мл 0,1 N раствора азотнокислого алюминия. Оставляли стоять на 2 ч при периодическом перемешивании, после чего отгоняли воду при медленном нагревании и перемешивании. Полученный продукт сушили при 150°С и прокаливали в муфельной печи при 500°С до полного удаления азота. Для нанесения 2,8 микроэквивалента A1³⁺ на 1 м² поверхности пробы силикагеля массой 5 г необходимо 1,4 г девятиводного нитрата алюминия.

Модифицирование силикагеля КСК-2 катионами железа

Гидроксилированный и высушенный при 150°С силикагель в количестве 5 г обрабатывали 50 мл раствора хлорного железа в этиловом спирте. Смесь оставляли на 4 ч, периодически перемешивая, после чего отгоняли спирт при медленном нагревании и перемешивании. Далее удаляли избыток раствора и полученный продукт сушили 3 ч при 150°С, а затем прокаливали в муфельной печи при 450°С в течение 5 ч. Расчет количества модификатора проводили по величинам удельной поверхности адсорбента и поверхностной концентрации катионов на его поверхности.

Модифицирование силохрома С-80 полиарилатом Ф-1

Гидроксилированный и высушенный силохром C-80 (5 г) смешивали с 50 мл раствора полиарилата Φ -I в хлороформе с известной концентрацией. Смесь оставляли на 24 ч, после чего при перемешивании и слабом нагревании отгоняли растворитель. После отгонки растворителя адсорбент сушили под вакуумом в сушильном шкафу при 80°C в течение 4 ч. Для приготовления 5 г адсорбента с содержанием полимера на поверхности 2 мг/м² при величине площади поверхности 65 м²/г необходимое количество полимера Φ -1 составляет 65×2×5 = 650 мг, при содержании полимера на поверхности 3 мг/м² потребуется 975 мг.

Модифицирование силохрома С-80 полиакрилонитрилом

Гидроксилированный и высушенный силохром C-80 в количестве 3 г смешивали с 25 мл раствора полиакрилонитрила (ПАН) в диметилформамиде с известной концентрацией. Смесь оставляли на 24 ч, после чего при перемешивании и слабом нагревании отгоняли растворитель. После отгонки растворителя адсорбент сушили под вакуумом в сушильном шкафу при 150°С в течение 8 ч. Для приготовления 3 г адсорбента с содержанием полимера на поверхности 1 мг/м² при величине площади поверхности 65 м²/г необходимое количество полимера составляет 65×3×1 = 195 мг. Изложенные выше данные показывают, что групповые разделения нефтепродуктов могут с наибольшим успехом осуществляться на адсорбентах типа катионированных силикагелей или кремнеземистых адсорбентов, модифицированных полярными полимерными покрытиями типа полиакрилонитрила и др. В табл. 1 приведены данные по удерживанию бензола, нафталина и фенантрена на исходном и модифицированных адсорбентах. Показано, что степени удерживания исходного и модифицированных адсорбентов существенно различаются. Происходит изменение разделяющей способности адсорбентов в результате изменения ионного состава поверхности. Это особенно заметно в случае адсорбента, модифицированного ионами алюминия. В частности, показаны преимущества разработанных адсорбентов, в том числе силикагеля КСК, модифицированного катионами алюминия или органическими модификаторами, при разделении бензиновых и среднекипящих фракций нефти с содержанием ароматических компонентов от 11 до 42% [114].

Разработка хроматографических методов анализа углеводородного состава бензинов

Исходной информацией для расчета физико-химических и эксплуатационных свойств бензина являются данные по углеводородному составу. Для получения необходимой информации был разработан хроматографический метод с использованием высокоэффективных стеклянных капиллярных колонок отечественного производства. Высокая эффективность колонок достигалась за счет нанесения неподвижной фазы на стенки капилляра под давлением в статических условиях. В связи с тем, что сквалан, используемый в качестве неподвижной фазы, плохо смачивает стекло, поверхность капилляра предварительно графитировали путем пиролиза бромистого метила.

Полученные капиллярные колонки обладают высокой эффективностью (240000–270000 т.т. по *н*-гептану), хорошей воспроизводимостью результатов и более длительными сроками эксплуатации [115].

Таблица l

A reepfour	$K' = (t - t_0)/t_0$			$\alpha_c = K_i / K_{\mathrm{cr}(6)}$		
Адсороент	бензол	нафталин	фенантрен	нафталин	фенантролин	
Силикагель КСК	0,30	0,50	0,80	1,7	2,7	
Силикагель ШСК	0,30	0,60	1,20	1,7	3,5	
КСК модиф. Ca ²⁺	0,35	0,70	1,85	2,0	5,3	
КСК модиф. A1 ³⁺	0,48	1,00	2,70	2,1	5,7	
КСК модиф. Fe ³⁺	0,37	0,62	1,31	1,7	3,5	
Силохром С-80	0,17	0,47	0,72	1,7	5,2	
СилохромС-80/Ф-1	0,19	0,52	1,07	1,7	5,6	
Силохром С-80/ПАН	0,20	0,61	1,05	_	_	

Удерживание бензола, нафталина и фенантрена на исходных и модифицированных адсорбентах (бензол α = 1)

K' – коэффициент емкости, K_{ct} – коэффициент емкости стандарта, t – время выхода ароматического углеводорода, t_0 – время выхода несорбируемого компонента, α_c – коэффициент селективного разделения АУ.

Рис. 1. Хроматограмма бензина каталитического крекинга

Оптимальные условия разделения компонентов бензина на стеклянной капиллярной колонке приведены в табл. 2. Хроматограмма бензина каталитическо-

Таблица 2

Оптимальные условия разделения компонентов бензина на стеклянной капиллярной колонке

Параметр	Условия разделения
Длина колонки	100 м
Диаметр колонки	0,25 мм
Неподвижная жидкая фаза	Сквалан
Расход газа-носителя (гелия)	1 мл/мин
Начальная температура	30°C
Конечная температура	100°C
Скорость программирования температуры	1 град/мин
Объем пробы	0,3 мл
Детектор	пид

го крекинга, наиболее сложного по составу, полученная в условиях, описанных в табл. 2, приведена на рис. 1. Бензин образует на хроматограмме 223 пика, идентификацию которых осуществляли как по индексам удерживания, так и методом хромато-масс-спектрометрии. Для расчета индексов удерживания бензин анализировали в изотермических условиях при температуре 30, 80 и 100°С. При 30°С анализировали фракцию бензина до *н*-гептана включительно, при 80°С – от *н*-гептана до *н*-нонана и при 100°С – от *н*-нонана и выше. Время элюирования несорбирующегося компонента определяли по пику метана. Индексы удерживания рассчитывали на ЭВМ по специальной программе. Погрешность шести параллельных определе ний индексов удерживания не превышала 0,1 ед. При сравнении рассчитанных индексов удерживания с литературными данными наблюдали хорошую корреляцию. Идентификацию компонентов бензина каталитического крекинга по массспектрам проводили на хромато-масс-спектрометре модели 598А («Хьюлетт-Паккард», США). Полученные масс-спектры компонентов бензина сравнивали с помощью компьютера 21 МХ-Е («Хьюлетт-Паккард», США) со стандартными масс-спектрами. Спектрограммы по полному ионному току практически полностью совпадают с хроматограммами, полученными на газовом

хроматографе с пламенно-ионизационным детектором, при этом наблюдали хорошее совпадение полученных масс-спектров со стандартными. Результаты идентификации компонентов бензина обоими методами совпадают практически полностью, за исключением нескольких пиков, при идентификации которых использовали хроматомасс-спектральный метод. В табл. 3 приведены идентификация и состав компонентов бензина каталитического крекинга, а также индексы удерживания, рассчитанные для изотермических условий при температуре 30, 80 и 100°С, и индексы удерживания, определенные в режиме программирования температуры при условиях, указанных в табл. 2. Данные, представленные в табл. 3, являются исходной информацией для расчета основных эксплуатационных характеристик бензинов: октанового числа, фракционного состава, давления насыщенных паров и плотности.

Разработка хроматографических методов определения состава реактивных топлив

Хроматографические методы определения физикохимических и эксплуатационных свойств реактивных топлив основаны на использовании информации об их составе. Для получения этой информации разработан комплекс методов, позволяющих определять как групповой состав топлив, так и содержание индивидуальных углеводородов, наиболее сильно влияющих на их показатели качества.

Для определения группового состава топлив используются два варианта жидкостной хроматографии – колоночная с флюоресцентным индикатором (ФИА) и ВЭЖХ. Метод ФИА позволяет разделять углеводороды реактивных топлив на насыщенную, олефиновую и ароматическую фракции, которые затем могут быть исследованы методом газовой хроматографии. Флюоресцентный индикатор, добавляемый в пробу в небольшом количестве, позволяет выявить границы раздела этих фракций, наблюдаемые визуально в обычном или ультрафиолетовом свете. Подробное описание этого метода с применением отечественного индикатора и силикагеля приведено в [116]. Точность метода невысока, однако он позволяет выделять фракции углеводородов в чистом виде без растворителя для последующего анализа другими методами. Метод ВЭЖХ дает более полную информацию о химическом составе реактивных топлив. Разделение в этом случае осуществляется на колонке с силикагелем КСК. Эффективность колонок, заполняемых сухим способом, составлявлет до 55 тыс. т.т. на 1 м по α-метилнафталину, что достаточно для разделения анализируемого топлива на насыщенные, моно-, би-, и трициклические ароматические углеводороды.

Селективность колонки оценивали по результатам анализа искусственных смесей, содержащих алкилмоноциклические и алкилбициклические углеводороды. В ряде случаев удерживание таких углеводородов лишь в малой степени зависит от величины и структуры заместителя. Например, толуол, тетралин, гексагидроантрацен и додекагидротрифенилен элюируются одним пиком. Столь высокая селективность данного сорбента объясняется тем, что на его поверхности адсорбируются преимущественно ароматические ядра, тогда как адсорбция алкильных заместителей малосущественна. Детектирование ароматических углеводородов, разделенных на колонке, осуществляли с помощью детектора по поглощению в УФ-области спектра, имеющего высокую чувствительность по отношению к ароматическим углеводородам. Однако коэффициенты поглощения УФ-детектора по отношению к углеводородам различных гомологических рядов, элюирующихся одним пиком, отличаются довольно значительно. Например, коэффициент поглощения тетралиновых углеводородов, элюирующихся вместе с алкилбензолами, больше коэффициента погашения последних примерно в 2 раза. В связи с этим калибровка детектора по коэффициентам поглощения индивидуальных компонентов нецелесообразна. Калибровка по искусственным смесям, имитирующим реальное топливо, также затруднительна, так как не всегда удается составить смесь, которая бы достоверно моделировала состав анализируемой пробы. Очевидно, что более надежной является калибровка УФ-детектора по группам углеводородов, выделенных препаративно из аналогичных реактивных топлив. Такие фракции выделялись нами на колонке диаметром 12 мм с окисью алюминия. По выделенным фракциям строились калибровочные графики зависимости площади пиков от содержания моно- и бициклических ароматических углеводородов. Было установлено, что трициклические ароматические углеводороды в реактивных топливах практически отсутствуют. Для построения калибровочного графика использовали усредненные значения, полученные в результате пяти параллельных определений. Для сравнения были получены калибровочные графики, построенные на основании данных анализа индивидуального углеводорода – (тетралина) и искусственной смеси, состоящей из бензола, толуола, тетралина, гексагидроантрацена и додекагидротрифенилена. Все три графика представлены на рис. 2. Они показывают,

Рис. 2. Графики зависимости площадей пиков ароматических углеводородов от их содержания в анализируемой пробе: *1* – тетралин; *2* – искусственная смесь: бензол, толуол, тетралин, гексагидроантрацен, додекагидротрифенилен; *3* – фракция моноциклических ароматических углеводородов, выделенных из реактивного топлива

что калибровка по смеси индивидуальных соединений может привести к значительным ошибкам при анализе ароматических углеводородов. Градуировка УФ-детектора по смеси ароматических углеводородов, выделенных из реактивных топлив, аналогичных исследуемым, дает хорошие количественные результаты. Однако препаративное выделение таких фракций представляет собой чрезвычайно трудоемкий процесс, в значительной мере усложняющий анализ. Поэтому для количественного расчета ароматических углеводородов экспериментальным путем были подобраны такие длины волн, при которых значения молярных коэффициентов поглощения ароматических углеводородов различной структуры имели минимальные различия.

Определение индивидуальных ароматических углеводородов в реактивных топливах

Имеющиеся в настоящее время экспериментальные данные показывают, что наибольшее влияние на термическую и химическую стабильность реактивных топлив оказывают ароматические и олефиновые углеводороды. Поэтому необходимо более подробное изучение их состава. Реактивные топлива являются сложными многокомпонентными смесями углеводородов, выкипающими в широком диапазоне температур. Поэтому прямой анализ ароматических углеводородов без предварительного их выделения крайне затруднителен или даже вообще невозможен. Для выделения ароматических углеводородов в настоящее время используется метод ФИА. Выделенные ароматические углеводороды анализировали методом газовой хроматографии на высокоэффективных капиллярных колонках с неподвижной фазой OV-I0I, представляющей собой диметилсилоксановый эластомер. Экспериментально подобранные оптимальные условия разделения приведены в табл. 4. Хроматограмма ароматических углеводородов реактивного топлива, полученная при описанных выше условиях, приведена на рис. 3, 4. Как видно из рисунков, хроматограмма содержит более 100 пиков, степень разделения которых изменяется от 0,5 до 3,3. Время анализа не превышает 75 мин. Результаты анализа представлены в табл. 5. Идентификания ароматических углеводородов, принадлежащих к разным гомологическим рядам, потребовала использования целого комплекса приемов. Схема идентификации приведена на рис. 5. Исходное топливо разгоняли на узкие десятиградусные фракции, из которых методом ФИА выделяли ароматические углеводороды, а затем исследовали методом капиллярной хроматографии как в режиме программирования, так и в изотермических условиях при различных температурах. По результатам расчета температурных коэффициентов индексов удерживания, а также коэффициентов погашения проводили определение структуры анализируемых соединений. Коэффициенты поглощения рассчитывали с помощью селективного детектора по поглощению в ближней УФ-области спектра. После выяснения принадлежности исследуемых углеводородов к тому или иному гомологическому ряду по индексам удерживания, опубликованным в литературе, проводили их идентификацию с использованием эталонных соединений. С целью подтверждения правильности идентификации для всех исследуемых компонентов были рассчитаны температуры кипения. Для определения температуры кипения ароматических углеводородов использовали их линейные зависимости от соответствующих индексов удерживания.

Разработка хроматографических методов определения углеводородного состава дизельных топлив

Использование топлив утяжеленного фракционного состава и топлив, содержащих продукты вторичной переработки нефти, предъявляет особые требования к их химическому составу, который должен обеспечить требуемые показатели качества топлив. Для выяснения химического состава дизельных топлив был разработан комплекс хроматографических методов, позволяющий определять содержание моно-, би- и трициклических ароматических, *н*-парафиновых и суммы

Таблица З

Углеводородный состав и результаты идентификации компонентов бензина каталитического крекинга

Компонент		Индекс удерживан	Індекс удерживания		
	0⁄0	изотермический режим	программирование температуры		
1	2	3	4		
Пропан	0,027	300	300		
Изобутен	0,09	331,8	_		
Изобутан	0,503	366,4	366,0		
Бутен-1	0,685	392,8	390,0		
н-Бутан	0,134	400,0	400,0		
Бутен-2 (транс)	0,614	406,7	402,7		
Бутен-2 (цис)	0,385	427,3	417,3		
3-Метилбутен-1	0,079	471,7	452,7		
Изопентан	2,987	475,6	464,5		
Пентен-1	0,270	486,8	477,2		
2-Метилбутен-1	0,836	493,0	477,2		
2-Метил-1,3-бутадиен	0,004	495,6	477,2		
н-Пентан + пентен-2 (транс)	1,470	500,0	500,0		
Пентен-2 (цис)	0,751	512,1	503,5		
2-Метилбутен-2	1,925	524,0	509,7		
Пентадиен-1,2	0,008	528,0	513,3		
Пентадиен-2,3	0,004	532,0	516,2		
2,2-Диметилбутан	0,008	535,3	526,4		
Пентадиен-1,3 (транс)	0,205	546,7	535,0		
Пентадиен-1,3 (цис)	0,074	548,8	535,0		
Циклопентен	0,106	550,0	546,5		
3-Метилпентен-1	0,079	555,4	547,2		
4-Метилпентен-1	0,124	557,6	549,0		
2,3-Диметилбутен-1	0,231	561,6	550,5		
Циклопентан	0,060	563,2	554,3		
2,3-Диметилбутан	0,358	566,4	556,7		
2-Метилпентан	2,823	570,0	560,1		
2-Метилпентен-1	0,390	579,5	571,5		
Гексен-1	0,183	581,5	571,5		
3-Метилпентан	1,791	584,0	577,4		
Гексен-3 (транс) + гексен-3(цис) + 4-этилбутен-1	0,658	592,0	587,3		
Гексен-2 (транс)	0,734	596,2	596,5		
2-Метилпентен-2	0,885	597,8	596,5		
н-Гексан	0,338	600,0	600,0		
3-Метилпентен-2 (цис) + 3-метилциклопентен	0,619	602,0	601,4		

1	2	3	4
Гексен-2 (цис)	0,376	603,0	603,4
4,4-Диметилпентен-1	0,089	604,0	605,1
3-Метилпентен-2 (транс)	0,821	612,2	611,0
1,3-Гексадиен (транс)	0,016	614,3	613,0
1,3-Гексадиен (цис)	0,012	620,0	617,0
Этилциклобутан	0,009	621,7	617,0
2,3-Диметилбутен-2	0,213	624,0	613,6
Метилциклопентан	1,370	625,7	620,8
2,4-Диметилпентан	0,247	629,2	623,2
Бензол	0,473	633,5	628,7
4,4-Диметилпентен-2 (цис, транс)	0,066	636.3	631,2
3,4-Диметилпентен-1	0,016	638,2	634,0
2,4-Диметилпентен-1	0,137	640,5	638,1
2,4-Диметилпентен-2	0,865	642,8	640,1
1-Метилциклопентен + 3-метилгексен-1	0,134	646,8	643,6
2-Метилгексен-3 (транс)	0,093	649,7	645,2
1,3-Циклогексадиен	0,011	649,9	645,2
5-Метилгексен-1	0,017	651,6	645,2
2,4-Гексадиен (цис)	0,066	653,7	647,2
4-Метилгексен-2 (<i>цис</i>)	0,201	655,6	647,2
4-Метилпентен-2 (транс)	0,045	656,5	648,3
3,3-Диметилпентан	0,146	658,8	650,8
Циклогексан	0,062	662,0	654,3
2-Метилгексан	1.904	667,0	659,6
Циклогексен	0,058	668,6	661,2
2,3-Диметилпентан	0,141	669,8	663,5
1,1-Диметилциклопентан + 1,6-Гексадиен	0,416	670,6	666,3
3-Метилгексан	1.670	676,3	670,4
2-Метилгексен-1	0,248	677,6	670,4
1,3-Диметилциклопентан (цис)	0,626	680,4	677,6
Гептен-1	0.159	682,0	677,6
1,3-Диметилциклопентан (<i>транс</i>)	0,454	682,8	682,9
3-Этилпентан	0,314	683,9	682,9
1,4-Циклогексадиен + гептен-3 (транс)	0,220	684,5	684,1
1,2-Диметилциклопентан (<i>транс</i>)	1,289	685,7	686,0
Гептен-З (цис)	0,456	693,1	689,2
Не идентифицирован	0,026	695,1	690,9
3-Метилгексен-2 (<i>транс</i>)	0,131	696,2	693,7

1	2	2	4
3 5-Лиметипрексец_1	0.287	698.2	697.1
μ -Гептан + гептен-? (<i>mpa</i> _H c)	0.591	700	700
3-Метипгексен-2 (иис)	0.266	703 3	705.2
Гептен-2 (иис)	0.203	706.7	705.2
2.2-Лиметилгексен-3(<i>mpanc</i>)	0.021	716.1	714.3
2.2-Лиметилгексан	0.047	718.3	716.2
5,5-Диметилгексен-2 (<i>цис</i>)	0,023	720,4	716,2
2.2-Диметилгексен-3 (<i>цис</i>)	0,044	721,6	719,6
1,2-Диметилциклопентан (цис)	0,349	725,0	719,6
1,1,3-Триметилциклопетан (<i>цис</i>)	0,105	727,6	721,2
2,5-Диметилгексан	0,156	728,9	725,1
Метилциклогексан	0,585	731,0	723,3
2,4-Диметилгексан	0,243	733,0	725,6
2,5-Диметилгексен-3 (транс)	0,069	735,4	728,6
2,4-Диметилгексен-2	0,088	736,1	730,6
Этилциклопентан	0,303	737,6	730,6
3-Метилциклопентен	0,426	740,0	730,6
4,5-Диметилгексен-2 (транс)	0,137	742,9	731,8
3-Метилгексен-1 + 1,2,4-триметилциклопентан	0,417	744,8	785,2
1,2,4-Триметилциклопентан (<i>транс, цис</i>)	0,501	746,5	737,6
Толуол	0,313	750,3	740,9
2,5-Диметилгексен-2	0,429	751,4	743,0
3,5-Диметилгексен-2 (<i>цис</i>)	0,099	753,3	746,1
3,5-Диметилгексен-2 (транс)	0,106	754,6	748,4
3,4-Диметилгексен-2 (<i>цис</i>)	0,097	755,6	751,7
6-Метилгептен-3 (цис)	0,111	757,9	751,7
2,3-Диметилгексан	0,265	761,6	756,8
5-Метилгептен-3 (транс)	0,289	763,6	758,2
2-Метилгептан	0,848	765,4	761,5
4-Метилгептан	0,449	767,8	764,0
6-Метилгептен-2 (цис)	0,103	770,4	766,3
3-Метилгептан	1,258	773,1	769,7
2-Метилгептен-1	0,204	775,8	771,0
5-Метилгептен-2 (цис)	0,204	777,6	772,2
3-Метилгептен-3 (цис)	0,241	778,6	777,1
Октен-1	0,300	781,4	780,2
Октен-4 (транс)	0,532	783,4	781,6
Октен-4 (цис) + 1-этил-3-этилциклопентан (транс)	0,653	788,2	783,9

1	2	3	4
1,3- Диметилциклогексан (<i>цис</i>) + 1,4-диметилциклогексан (<i>транс</i>)	0,440	788,5	785,5
1,1-Диметилциклогексан	0,375	790,0	785,5
1-Этил-3-метилциклопентан (<i>цис</i>)	0,391	764,7	787,7
1-Этил-2-метилциклопентан (<i>транс</i>)	0,129	797,4	791,5
Октен-2 (транс)	0,203	798,5	796,1
н-Октан	0,286	800,0	800,
Октен-2 (цис)	0,171	801,9	801,8
Не идентифицирован	0,112	805,7	803,2
2,6-Октадиен	0,191	807,9	806,1
1,3-Диметилциклогексан (<i>транс</i>) + 1,4-диметилциклогексан (<i>цис</i>)	0,405	810,4	807,5
1-Метил-1-этилциклопертан	0,124	813,9	812,2
2,2-Диметилгептан	0,121	817,4	812,8
Изопропилциклопентан	0,091	823,1	814,1
2,4-Диметилгептан	0,152	825,6	817,3
1-Этил-2-метилциклопентан (цис)	0,131	828,7	822,4
2,6-Диметилгептан	0,314	829,1	826,0
5-Метил-3-этилгексан	0,238	833,2	828,5
2,5-Диметилгептан	0,397	834,3	831,4
3,5-Диметилгептан	0,198	836,7	832,9
1,2-Диметилциклогексан (цис)	0,120	837,7	835,0
Этилбензол	1,231	842,0	836,6
Не идентифицирован	0,173	843,4	_
Этилциклогексан	0,184	844,3	836,6
2-Метил-3-этилгептан	0,065	845,6	840,6
1,1,3-Триметилциклогексан	0,151	846,2	843,0
1,2-Диметил-3-этилциклопентан	0,117	848,8	845,2
пара-Ксилол	1,231	854,8	851,0
мета-Ксилол	3,516	857,0	853,3
2,3-Диметилгептан	0,609	859,0	853,3
4-Этилгептан	0,109	860,2	855,4
3,4-Диметилгептан	0,100	862,1	857,2
4-Метилоктан	0,335	863,5	860,1
2-Метилоктан	0,413	865,2	862,6
1,3,5-Триметилциклогексан (транс)	0,095	866,2	864,0
3-Этилгептан	0,119	869,8	865,1
1,2,4-Триметилциклогексан (транс, цис)	0,162	871,2	867,7
3-Метилоктан	0,556	874,0	868,8
1-Метил-3-изопропилциклопентан	0,135	875,7	871,8
орто-Ксилол	1,577	877,9	871,8

1	2	3	4
1,2-Диметил-3-этилциклопентан (цис, транс)	0,079	881,2	879,5
1,2,4-Триметилциклогексан (транс, транс)+1,2,3- триметилциклогексан (транс, транс)	0,245	883,5	883,4
Нонен-4 (цис)	0,094	885,4	885,7
1,2,4-Триметилциклогексан (цис, цис)	0,089	887,5	886,8
1,2,4-Триметилциклогексан (транс, цис)	0,082	888,0	889,2
Нонен-3 (цис)	0,076	888,8	890,8
2-Метилоктен-1	0,087	891,5	891,9
2-Метилоктен-2	0,070	893,4	892,9
1,1,2-Триметилциклогексан	0,092	894,2	893,2
1-Метил-3-этилциклогексан (цис)	0,060	896,2	894,6
Нонен-2 (транс)	0,170	898,7	897,9
н-Нонан	0,200	900	900
Изопропилбензол	0,187	902,2	899,4
1-Метил-4-этилциклогексан (транс)	0,187	907,8	901,7
1-Метил-3-этилциклогексан (транс)	0,218	911,0	905,2
1,2,3-Триметилциклогексан (транс, цис)	0,260	914,3	912,0
Неидентифицирован	0,593	_	_
2,5-Диметилоктан	0,344	923,8	917,0
Изопропилциклогексан	0,330	926,8	921,8
2,7-Диметилоктан	_	_	_
н-Пропилбензол	0,227	934,0	925,2
2,6-Диметилоктан	0,210	935,0229,6	229,6
3,3-Диметилоктан	0,252	935,7	931,2
1,1,3,4-Тетраметилгексан (<i>транс,транс,цис</i>)	0,200	937,2	931,2
1,2,3,5-Тетраметилциклогексан (транс, транс, цис)	0,201	937,8	933,0
1,2,4,5-Тетраметилциклогексан (транс,транс,транс)	0,248	939,3	933,0
1-Метил-3-этилбензол	0,736	940,3	937,6
1-Метил-4-этилбензол	0,846	943,7	939,6
Не идентифицирован	0,384	947,9	_
1,1,2,5-Тетраметилциклогексан	0,223	950,3	941,4
4-Этилоктан	0,333	952,4	946,5
2,3-Диметилоктан	0,480	954,4	947,8
4-Метилнонан	0,926	960,7	950,0
1,3,5-Триметилбензол	1,364	983,4	957,0
2-Метилнонан	0,210	964,6	959,3
1,4-Диметил-2-этилциклогексан (транс, цис)	0,294	967,2	961,9
2-Этилоктан	0,577	969,5	964,0

Окончание табл. 3

1	2	3	4
3-Метилнонан	0,272	970,8	967,1
1,2-Диметил-4-этилциклогексан (транс, цис)	0,474	973,5	972,1
1,1-Диметил-2-этилциклогексан	0,364	978,0	979,3
1,3-Диметил-4-этилциклогексан (цис, транс)	2,868	980,0	981,7
1,2,4-Триметилбензол + изобутилбензол + втор.бутилбензол	0,265	985,8	984,5
1,2,3,4-Тетраметил-4-этилциклогексан (цис,цис,транс)	0,325	991,2	989,1
1,2-Диметил-4-этилциклогексан (цис, транс)	0,245	993,9	992,0
1,2-Диметил-3-этилциклогексан (транс, транс)	0,183	996,5	997,3
н-Декан	0,399	1000,0	1000,0
1-Метил-2-изопропилциклогексан (транс)	0,230	1001,0	1001,2
1-Метил-3-изопропилциклогексан (цис)	0,840	1006,6	1006,1
1-Метил-2-н-пропилциклогексан (транс)	0,246	1008,0	1008,4
1,2,3-Триметилбензол	0,976	1010,6	1009,3
1-Метил-5-изопропилбензол	0,280	1012,01,9	1011,9
Индан	0,996	1014,3	1013,8
1,4-Диэтилцилогексан (транс)	0,524	1016,1	1016,0
1,2-Диметил-3-этилцилогексан (цис, транс)	0,500	1019,1	1018,0
1,2-Диэтилцилогексан (транс)	0,394	1020,8	1020,0
1,4-Диэтилцилогексан (цис)	0,242	1024,6	1024,5
1,3-Диэтилбензол	0,838	1027,0	1027,4
1-Метил-3- <i>н</i> -пропилбензол	1,196	1032,4	1032,8
н-Бутилбензол	0,656	1034,5	1033,9
н-Бутилциклогексан	0,416	1037,0	1037,8
1,4- + 1,2-Диэтилбензолы	0,847	1038,1	1038,9
2,6-Диметилнонан	0,795	1042,0	1042,1
1-Метил-2- <i>н</i> -пропилбензол	0,558	1044,8	1044,3
1-Метил-3-изобутилбензол	1,618	1047,5	1047,0
2,4-Диметилнонан	0,495	1050,1	1050,8
Не идентифицирован	0,746	1053,9	1055,0
5-Метилдекан + 1,3-диметил-5-этилбензол	0,460	1057,4	1057,9
4-Метилдекан + 1,4-диметил-2-этилбензол	1,063	1059,1	1060,0
2-Метилдекан	0,964	1062,8	1062,2
2-Фенилпентан	0,695	1064,2	1064,8
3-Этилнонан	0,860	1068,6	1068,6
1.3-Диметил-4-этилбензол	1,000	1070,1	1070.9

изо-парафиновых и нафтеновых углеводородов. Метод определения моно-, би- и трициклических ароматических углеводородов основан на применении ВЖХ с использованием детектора по поглощению в УФобласти спектра с переменной длиной волны. Разделение дизельного топлива осуществляется на жидко-

Рис. 3. Хроматограмма реактивного топлива (пламенно-ионизационный детектор), полученная на капиллярной колонке с неподвижной фазой OV-101

Рис. 4. Хроматограмма ароматических углеводородов реактивного топлива (УФ-детектор): *1* – алкилбензолы, индан, тетралин; *2* – нафталин; *3* – 2-метилнафталин; *4* – 1-метилнафталин; *5* – неидентифицирован; *6* – 2-этилнафталин + 1-этилнафталин; *7* – 2,6диметилнафталин + 2,7-диметилнафталин; *8* – 1,7-диметилнафталин; *9* – 1,6-диметилнафталин + 1,8-диметилнафталин; *10* – 1,4-диметилнафталин + 2,3-диметилнафталин + 1,5-диметилнафталин; *11* – 1,2-диметилнафталин

Рис. 5. Схема идентификации ароматических углеводородов реактивных топлив

стном хроматографе на колонках с силикагелем КСК, модифицированном катионами Al³⁺ или Ca²⁺. При этом определяются следующие группы углеводородов: насыщенные (сумма парафиновых и нафтеновых углеводородов), моно-, би- и трициклические ароматические углеводороды (рис. 6, 7).

С учетом большого различия в чувствительности УФ-детектора по отношению к ароматическим углеводородам разной структуры были выбраны такие длины волн для снятия УФ-спектров, при которых значения молярных коэффициентов экстинкции ароматических углеводородов определенной структуры имели минимальные отличия. Выбор длин волн проводили по УФ-спектрам как индивидуальных углево-

Рис. 6. Зависимость площади хроматографического пика от содержания определяемых групп углеводородов: 1 – моноциклические ароматические углеводороды; 2 – бициклические ароматические углеводороды

Параметр	Условия разделения
Длина колонки	100 м
Диаметр колонки	0,25 мм
Неподвижная жидкая фаза	Полисилоксан OV-101
Расход газа-носителя (гелия)	1,5 мл/мин
Начальная температура	105 °C
Конечная температура	180 °C
Скорость программирования температуры	1 град/мин
Температура испарителя	350 °С
Объем пробы	0,1-0,2 мкл
Детектор	пид

Таблица 4

Оптимальные условия разделения ароматических углеводоров реактивных топлив

дородов, так и фракций, препаративно выделенных из дизельных топлив.

Фракции моно- и бициклических ароматических углеводородов выделялись методом препаративной жидкостной хроматографии из образцов топлив различных марок, полученных из нефтей разных месторождений. Препаративное разделение проводили на колонках длиной 50 см и диаметром 15 мм с оксидом алюминия. Чистоту выделенных фракций проверяли методом капиллярной хроматографии. Для построения градуировочных зависимостей использовали растворы с разной концентрацией выделенных фракций моно- и бициклических углеводородов.

В результате проведенных исследований были выбраны длины волн 218, 280 и 255 нм для определения моноциклических, бициклических и трициклических ароматических углеводородов соответственно. При выбранных длинах волн определены молярные коэффициенты экстинкции, препаративно выделенных фракций моноциклических и бициклических ароматических углеводородов. Эти величины отличались незначительно, что позволило проводить

Рис. 7. Хроматограммы дизельного топлива, зарегистрированные при различных длинах волн УФ-детектора: 218 нм (*a*); 280 нм (*б*); 255 нм (*в*). Ароматические углеводороды: 1 – моноциклические; 2 – бициклические; 3 – трициклические

Таблица 5

Состав, температура кипения и характеристики удерживания ароматических углеводородов реактивного топлива

Наименование компонента	а Температура кипения, °С		Температура удерживания,	Индекс удерживания	Содержание (мас.%) в расчете на	
	литературные данные	расчетные данные			ароматические углеводороды	топливо
1	2	3	4	5	6	7
Этилбензол	136,19	136,7	116,6	855,2	_	_
1,3+1,4-Диметилбензолы	138,35+1139,10	139,6	116,8	862,6	_	_
1,2- Диметилбензол	144,41	145,0	117,6	891,9	_	_
Изопропилбензол	152,39	153,1	118,7	920,4	_	_
н-Пропилбензол	159,22	160,5	120,0	950,8	0,16	0,02
1-Метил-3-этилбензол	161,31	162,0	120,3	956,7	0,52	0,06
1-Метил-4-этилбензол	161,99	162,5	120,5	958,2	0,27	0,03
1,3,5-Триметилбензол	164,72	163,8	120,7	964,6	0,68	0,08
1-Метил-2-этилбензол	165,15	166,0	121,2	976,5	0,27	0,03
1,2,4-Триметил- бензол+трет.бутилбензол+ изобутилбензол	169,35+169,50+ 172,85	170,0	122,0	991,9	2,68	0,30
Втор.бутилбензол	173,30	173,3	122,8	1006,2	0,09	0,01
1-Метил-3- изопропилбензол	175,20	174	123,1	1009,1	0,1	0,01
Не идентифицирован	_	-	-	-	0,04	0,01
1,2,3-Триметилбензол	176,08	177,0	123,7	1020,3	1,05	0,12
Индан	177,95	179,0	124,4	1032,0	0,27	0,03
1,3-Диэтилбензол	181,25	181,3	125,1	1041,8	0,35	0,04
1-Метил-3- <i>н</i> - пропилбензол	181,75	182,0	125,3	1044,5	1,51	0,17
1,4+1,2-Диэтилбензолы	183,6+183,3	183,5	125,7	1050,7	2,80	0,31
1,3-Диметил-5-этилбензол	183,65	184,2	125,9	1052,9	0,1	0,01
1-Метил-2- <i>н</i> - пропилбензол	184,75	185,8	126,4	1061,3	0,66	0,07
1-Метил-3- изобутилбензол	186-188	187,7	127,1	1070,8	0,78	0,09
1,3-Диметил-4-этилбензол	188,45	188,1	127,3	1073,1	0,89	0,10
2-Фенилпентан	189-190	188,8	127,5	1076,6	0,3	0,03
1,2-Диметил-4-этилбензол	189,55	189,3	127,7	1079,3	1,45	0,16
1,3-Диметил-2-этилбензол	189,95	189,9	127,9	1081,1	0,73	0,08
1,3-Этил-3- изопропилбензол	190-192	191,6	128,2	1084,5	0,08	0,01
1-Метил-4- трет.бутилбензол	192,75	192,8	128,8	1094,6	0,02	0,01
1,1-Диметилиндан	191,1	192,0	129,0	1096,3	0,36	0,04
1,2-Диметил-3-этилбензол	193,8	193,6	129,3	1101,9	0,4	0,04
1-Этил-4- изопропилбензол	194,0	193,9	129,5	1103,3	0,15	0,02

1	2	3	4	5	6	7
1,2,4,5-Тетраметилбензол	196,85	196,7	130,3	1112,2	1,67	0,19
1,2,3,5-Тетраметилбензол	198,15	197,3	130,6	1115,8	2,10	0,23
Не идентифицирован	_	-	_	_	0,08	0,01
1,3-Диметил-4- пропилбензол	200,0	199,8	131,7	1128,0	0,6	0,07
1-Метил-3,5- диэтидбензол	200,7	200,8	132,1	1132,5	1,68	0,19
1-Метил-4-бутилбензол	202,0	201,6	132,4	1135,8	1,17	0,13
1-Метил-3,4- диэтилбензол	201-203	291,8	132,5	1137,0	0,34	0,04
1,3-Диметил-5- пропилбензол	203,0	293,3	132,9	1141,1	3,30	0,37
5-Метилиндан	201,7	202,0	133,1	1143,5	3,0	
1,2,3,4-Тетраметилбензол	205,1	204,8	133,6	1148,9	1,82	0,20
Тетралин	207,6	207,1	134,0	1153,3	2,51	0,28
1-Метил-2,5- диэтилбензол	205-207	206,1	134,4	1157,7	0,49	0,05
1,4-Диметил-2- пропилбензол	206-207	206,5	134,6	1159,0	1,11	0,12
1,5-Диметил-2- пропилбензол	208-208,5	207,8	135,2	1165,7	1,11	0,12
Нафталин	218,0	218,2	136,1	1175,2	0,87	0,10
1,4-Диизопропидбензол	210,37	210,5	136,5	1179.2	1,39	0,16
1,2,5-Триметил-4- этилбензол	211,0	219,8	136,7	1181,6	1,38	0,15
Не идентифицирован	_	-	_	_	2,27	0,25
1,2,4-Триметил-5- этибензол	212,0	211,9	137,5	1189,9	2.64	0,30
2-Метилтетралин	218,0	216,8	138,8	1202,4	0,84	0,09
Не идентифицирован	_	_	_	_	_	_
1,4-Диметилиндан	216,0	214,0	139,4	1208,1	1,05	0,12
1,3,5-Триэтилбензол	215,9	215,7	139,0	1210,3	0,4	0,04
Не идентифицирован	-	-	-	_	_	_
1,2,4-Триметил-3- этилбензол	216,6	216,3	140,1	1215,5	1,24	0,14
1-Фенил-4-метилпентан	217,8	217,5	140,1	1215,5	1,24	0,14
1,2,4-Триэтилбензол	218,0	218,0	141,1	1224,4	0,2	0,02
1,3-Диметил-4- изобутилбензол	218,0	218,3	141,4	1226,9	0,24	0,03
1,3-Диметил-4- втор.бутилбензол 220,0	220,0	218,8	141,6	1229,1	0,58	0,06
1-Фенил-3-метилпентан	220,0	219,6	142,1	1233,5	1,06	0,12
Не идентифицирован	-	-	-	-	0,12	0,01
Не идентифицирован	_			_	0,09	0,01

1	2	2	4	5	6	7
1 5 Этилинан	2	3	4	5	0	0.4
- Этилиндан На иналтифицироран	220,0	220,0	142,9	1241,4	5,02	0,4
пе идентифицирован	-	-	-	-	-	-
1-Метил-3-амилоензол	222,2	222,5	143,8	1249,8	1,37	0,15
6-Метилтетралин	229,0	227,8	144,5	1256,3	4,51	0,51
1,2,4-Триметил-5- изопропилбензол	221,5-223,5	223,1	144,7	1258,6	0,35	0,04
2-Метил-2-фенилгексан	224–225	224,5	145,0	1260,8	0,46	0,05
1-Метил-2,4- диизопропилбензол	225,0	225,1	145,3	1263,7	0,52	0,06
1,3-Диэтил-4- изопропилбензол	224–226	225,5	145,3	1266,4	1,29	0,14
1-Фенилгексан	227,4	226,8	146,3	1272,5	2,76	0,30
1-Метил-2,6- диизопропилбензол	228,0	228,0	147,0	1278,6	1,13	0,13
5-Метилтетралин	241,0	239,7	141,6	1284,6	1,35	0,15
Не идентифицирован	-	-	-	-	0,25	0,03
Не идентифицирован	_	-	_	_	0,86	0,10
1-Метил-2-амилбензол	230,0	229,6	148,0	1287,7	3,02	0,34
1-Этилтетралин	236,0	235,2	148,6	1293,1	1,35	0,15
2-Метилнафталин	244,7	243,8	149,4	1299,1	0,86	0,10
Не идентифицирован	_	_	_	_	0,78	0,09
2,6-Диметилтетралин	238,0	238,7	150,6	1310,7	3,43	0,38
1,4-Диметил-2- бутилбензол	233,0	232,2	150,7	1311,8	0,60	0,07
Не идентифицирован	_	_	_	_	0,40	0,04
2,2,4-Триметил-4- фенилпентан	235,3	235,3	151,4	1317,7	1,77	0,20
2,3,3-Триметил-2- фенилпертан	235,8	235,8	151,7	1320,0	0,48	0,05
2,3-Диметил-2- фенилгексан	236,8	236,5	152,1	1323,2	0,36	0,04
5-Этилтетралин	242,0	241,7	152,7	1328,5	1,74	0,19
Фенилгептан	237,8	237,9	152,9	1330,5	1,37	0,15
Не идентифицирован	_	_	_	_	0,52	0,06
2,4-Диметил-2- фенилгексан	238,8	238,8	153,5	1335,8	0,48	0,05
Не идентифицирован	_	_	_	_	0,10	0,01
Не идентифицирован	_	_	_	_	0,07	0,01
1,4-Ди- втор.бутилбензол	240,0	240,0	154,2	1341,9	0,51	0,01
5-Метил-6-этилиндан	241,0	239,7	154,6	1345,2	1,03	0,12
Не идентифицирован	_	_	_	_	0,25	0,03
Не идентифицировани	_	_	_	_	0,86	0,10
1,4-Диизобутилбензол	243,0	243.0	156,1	1358.2	0,40	0,04
2-Метил-2-фенилгептан	243,8	244,2	156,7	1362,7	1,55	0,17
Не идентифицирован	_		_	_	0.95	0,11
Не илентифицирован		-		_	0.45	0.05
ng ngennyngnpobun					-,	0,00

1	2	3	4	5	6	7
Не идентифицирован	_	-	-	_	0,11	0,01
1-Этилнафталин	257,9	258,3	158,6	1378,9	1,10	0,12
1,2,4,5-Тетраэтилбензол	248,6	248,3	159,1	1382,4	1,85	0,21
2-Этилбензол	258,7	-	-	-	-	-
1,2,3,5-Тетраэтилбензол	249,2	249,7	159,9	1389,2	0,38	0,04
2,6-Диметилнафталин + 2,7-диметилнафталин	262,0	261,7	160,4	1393,4	0,25	0,03
Неидентифицированных сигналов после 105 пика	_	_	_	_	3,62	0,41
Всего					100,00	11,1

Окончание табл. 5

97

количественный анализ по методу абсолютной градуировки. Как известно, в дизельных топливах трициклические ароматические углеводороды представлены в основном, фенантреновыми соединениями. Поэтому в расчетах использовали усредненный молярный коэффициент погашения, определенный из литературных данных по 25 фенантреновым соединениям. При длине волны 255 нм его величина составляет 5,1×10³ кг/ моль.м. Средняя молекулярная масса трициклических ароматических углеводородов, определенная методом масс-спектрометрии, равна 195. Была проведена оценка случайной погрешности определения трициклических ароматических углеводородов. При их содержании в дизельном топливе не ниже 0,7 мас.%, относительное стандартное отклонение не превышает 0,11. В дальнейшем были рассчитаны средние молярные ко-

СПИСОК ЛИТЕРАТУРЫ

- 1. Кореляков Л.А., Шершун В.Л. Российская нефтепереработка. Нефть и капитал. М., 2002. Т. 12. С. 18.
- 2. Baskin D.K., Hwang R.J., Kaufman R.L. Reservoir Geochemistry. California, 1993. P. 25.
- Богомолов А.И., Гайле А.А. и др. Химия нефти и газа. М., 1996.
- 4. *Peters K.E., Moldovan J.M.* The Biomarker Guide, Prentice Hall, Engelwood Cliffs, NJ, USA, 1993.
- 5. James A.T., Martin A.J.P. // Biochem J. 1951. 48. N 1. P. 7.
- 6. James A.T., Martin A.J.P. // Biochem J. 1952. 50. N 5. P. 679.
- 7. Фукс Н.А. // Успехи химии. 1956. 25. № 7. С. 847.
- Жуховицкий А.А., Золотарева О.В., Соколов В.А., Туркельтауб Н.М. // Докл. АН СССР. 1951. 77. № 3. С. 435.
- Жуховицкий А.А., Туркельтауб Н.М. // Успехи химии. 1956.
 25. № 7. С. 859.
- 10. *Адлард Э., Уайтхем Б*. Газовая хроматография. М., 1961. С. 235.
- 11. Martin R.L., Winters J.C. // Analyt. Chem. 1959. 31. P. 1954.
- 12. Eggersen F.T., Groennings S., Holst J.J. // Analyt. Chem. 1958. 30. N 1. P. 20.
- 13. Knight H.S. // Analyt. Chem. 1958. 30. N 1. P. 9.

эффициенты поглощения для фракций моно- и бициклических ароматических углеводородов реактивных и дизельных топлив. Для оценки правильности количественного определения моно-, ди- и трициклических ароматических углеводородов в дизельных топливах был проведен анализ искусственных смесей, моделирующих структуру исследуемых групп: бензола, метилнафталина и фенантрена. Коэффициенты молярного поглощения бензола, метилнафталина и фенантрена были взяты из литературных данных.

Разработанный метод был использован для определения группового состава ароматических углеводородов дизельных топлив различных марок. Результаты проведенных анализов удовлетворительно совпадают с данными проведенных параллельно флуоресцентноиндикаторных анализов.

- Вяхирев Д.А., Брук А.И., Гуглина С.А. Объемно-хроматографический метод анализа смесей углеводородов в газовой фазе. Труды Комиссии по аналитической химии. 1955.
 6. № 9. С. 137.
- 15. Вигдергауз М.С. Газовая хроматография как метод исследования нефти. М., 1973.
- 16. Лулова Н.И., Леонтьева С.А., Федосова А.Е., Гринверг А.А. Тез. докл. III Всесоюз. конф. по аналитической химии органических соединений. М., 1976. С. 248.
- 17. Киселев А.В., Никитин Ю.С., Савинов И.М. и др. // ЖФХ. 1964. **38.** С. 2328.
- 18. Пошкус Д.П., Афреймович А.Я. // ЖФХ. 1968. **42.** С. 1201.
- 19. *Авгуль Н.Н., Березин Г.И., Киселев А.В. и др.* // Изв. АН СССР. Отд. хим. наук. 1956. **30.** С. 2106.
- 20. Богомолов А.И., Шиманский В.К. // Геохимия. 1966. № 1. С. 14.
- 21. Добрянский А.Ф. Химия нефти. Л., 1961.
- 22. Golay M.J.E. Gas Chromatography. N.Y., 1957. P. 36.
- 23. Golay M.J.E. Nature. 1957. 180. P. 435.
- 24. *Golay M.J.E.* Gas Chromatography. 1958. Proc. of the 2nd Symp. In Amsterdam, 1958, Ed. D.H. Desty. London, Butterworths, 1958; M., 1961. C. 39.

- 26. Beach J.Y., Lindeman L.P. Publ. Group. Advancem. Methodes. Spectrogr. N.Y., 1961.
- 27. Gaylor V.F., Jones C.N., Landerl J.H., Hughes E.S. 6th World Petrol. Congr.; Francfurt am Main. 1963. Sec. 5 (Preprints), N 14, 16.
- 28. Henneberg D. // Z. analyt. Chem. 1961. B.183. N 1. S. 12.
- 29. Полякова А.А. Молекулярный масс-спектральный анализ нефтей. М., 1973.
- Хмельницкий К.И., Бродский Е.С. Хромато-масс-спектрометрия. М., 1972.
- Karasek F., Klement R.E. Basic gas chromatography-mass spectrometry. Amsterdam, 1988 (Введение в хромато-массспектрометрию. М., 1993).
- 32. Altgelt K.H., Gouw T.H. Chromatography in petroleum analysis. N.Y., 1979.
- 33. Кюллик Э.А., Коэль М.Н., Кальюранд М.Р. Применение ЭВМ в газовой хроматографии. 4-я Всесоюзн. конф. по аналитич. химии органических соединений. М., 1980. Тез. докл. М., 1979. С. 65.
- 34. Силис Я.Я., Кофман А.М., Розенблит А.Б. Первичная обработка хроматограмм и спектров на ЭВМ. Рига, 1980.
- Hippe Z., Bierovska A., Pietriga T. Analyt. Chim. Acta. 1980.
 122. N 3. P. 279.
- 36. Snyder L.R., Kirkland J.J. Introduction to modern liquid chromatography. N.Y., 1979.
- Цвет М.С. Труды Варшавского общества естествоиспытателей. Отд. биол. 1903. 14. С. 20.
- Tzvett M.S. Physicalische-chemische Untersuchungen des Chlorophill. Adsorption. Berichte der deutschen botanishen Gesellschaft. 1906. Bd. 24. S. 316.
- Tzvett M.S. Adsorption Analysis und chromatographischen Methode. Verbindung zum chlorophyll Chemie. Berichte der deutschen botanishen Gesellschaft. 1906 Bd. 24. S. 384.
- Жуховицкий А.А., Туркельтауб Н.М. Газовая хроматография. М., 1962.
- Руденко Б.А., Руденко Г.И. Высокоэффективные хроматографические процессы. М., 2003.
- Perry S.G., Amos R., Brewer P.L. Practical liquid chromatography, N.Y., 1972 (Практическое руководство по жидкостной хроматографии, М., 1974).
- High performance liquid chromatography / Eds. A. Henschen et al., Weinheim, 1986; Высокоэффективная жидкостная хроматография в биологии // под ред А. Хеншен и др. М., 1988.
- Liquid column chromatography / Eds. Z. Deil, K. Macek, J. Janak. Amsterdam; N.Y., 1975 (Жидкостная колоночная хроматография, М., 1978).
- Шатц В.Д., Сахартова О.В. Высокоэффективная жидкостная хроматография. Рига, 1988.
- 46. Chromatography in petroleum analysis. N.Y., 1954.
- Лисичкин Г.В. и др. Модифицированные кремнеземы в сорбции, катализе и хроматографии. М., 1986.
- 48. Бражников В.В. Детекторы для хроматографии. М., 1992.
- 49. Scott R.P.W. Liquid chromatography detectors. Amsterdam, 1977.
- Стыскин Е.Л., Ициксон Л.Б., Брауде Е.Б. Практическая высокоэффективная жидкостная хроматография. М., 1986.
- Андерсон А.А. Жидкостная хроматография аминосоединений. Рига, 1984.
- 52. Sawicki E., Meeker J.E., Morgan M.J. // J. Chromatogr. 1965. 17. N 2. P. 252.
- 53. Ланин С.Н., Никитин Ю.С. // ЖАХ. 1987. 42. № 9. С. 1611.

- 54. Руденко Б.А., Савчук С.А., Золотова М.Ю. Тез. XV Менделеевского съезда по общей и прикладной химии. Минск, 24–26 мая 1993 г. Минск, 1993. Т. 4. С. 158.
- 55. Руденко Б.А., Савчук С.А., Белушкин В.В. и др. // ЖАХ. 1996. **51.** № 2. С. 202.
- 56. Сониясси Р., Сандра П., Шлет К. Анализ воды: органические микропримеси. СПб., 2000.
- 57. Sulfur chemiluminescence detector SCD 350B, Boulder (Colo), Sievers Research, 1990.
- 58. *Чумаков Ю.И., Алябьева М.С.* Химическая промышленность Украины. 1970. Т. 5. С. 53
- 59. *Чумаков Ю.И., Алябьева М.С.* Химическая промышленность Украины. 1970. Т. 6. С. 49.
- Чумаков Ю.И., Дегтярев С.К., Алябьева М.С. Тезисы украинской республ. конф. по органич. химии. Киев, 1969. С. 10.
- 61. *Чумаков Ю.И., Лопатенко С.К.* Химия и технолог. топлив и масел. 1974. **4.** С. 53.
- 62. Chumakov Yu., Lopatenko S. Chromatographia, 1975. 8. P. 240.
- 63. *Hirsh D.E., Hopkins R.L., Coleman H.E.* // Analyt. Chem. 1972. 44. P. 915.
- 64. Jewell D.M., Ruberto R.G., Davis B.E. Analyt. Chem. 1972. 44. P. 2318.
- Martin M., Loheac J., Guiochon G. Chromatographia. 1972.
 P. 33.
- 66. *Hollerbach H., Welte P., Eladel K. //* Erdgaspetrochem ver Brenntaftchem. 1977. **B 30.** S. 12.
- 67. Dolansky M. // J. Chromatogr. 1978. 148. P. 175.
- Методы анализа органических соединений нефти, их смесей и производных М., 1969.
- 69. Колычев И.А., Темердашев З.А. // Заводск. лаборатория. 2008. № 3. С. 3.
- 70. *Темердашев З.А., Колычев И.А.* // Заводск. лаборатория. 2008. № 4. С. 4.
- Сергиенко С.Р. Высокомолекулярные соединения нефти. М., 1964.
- 72. Солодков В.К. и др. // Нефтехимия. 1969. 10. С. 8.
- 73. Bestougeff M.A. // Fractionnement des asphaltenes par chromatographie. C.R. Acad Sc. 262. Serie C, Paris, 1966.
- 74. Carruthers W., Douglas A.G. // J. Chem. Soc. 1964. P. 4077.
- 75. *Mair B.J.* Methods for separating petroleum hydrocarbons and 7th World petroleum congress, Mexico. 1967.
- Унгер Ф.Г. Химический состав высших погонов нефтей и нефтяных остатков, М., 1986. С. 149.
- 77. Плюснин А.Н. Совершенствование методов анализа нефтей. Томск, 1983. С. 5.
- 78. Черепица С.В., Бычков С.М., Гациха С.В. и др. // Химия и технологя топлив и масел. 2001. № 4. С. 44.
- Сидоренко А.А., Писарева С.И. Изучение состава и свойств компонентов нефтей. Томск, 1983. С. 125.
- 80. Рыбак Б.М. Анализ нефти и нефтепродуктов. М., 1962.
- 81. Yew F.H., Mair B.G. // Analyt. Chem. 1966. 38. P. 1133.
- Киселев А.В., Яшин Я.И. Адсорбционная газовая и жидкостная хроматография. М., 1979.
- Engelhardt H. High pressure liquid chromatography. Berlin, 1975 (Жидкостная хроматография при высоких давлениях. М., 1980).
- 84. Гусев Г.М., Онищенко П.П., Сапельников В.М., Соколов В.П. // ЖАХ. 1984. **39.** № 1. С. 18.
- 85. Весновский Б.П. // ЖАХ. 1986. 41. № 10. С. 1898.
- 86. Аль-Ахмед А., Лапин С.Н., Никитин Ю.С. // ЖАХ. 1988. 43. № 12. С. 2240.

- 87. Бурова М.О., Вигдергауз М.С., Жуховицкий А.А. и др.// Заводск. лаборатория. 1983. № 12. С. 3.
- 88. *Петров С.И., Тюляпина Т.Н.* // Заводск. лаборатория. 2002. № 4. С. 3,
- 89. Бродский Е.С., Лукашенко И.М., Калинкевич С.А., Савчук С.А. // ЖАХ. 2002. **57.** № 6. С. 486.
- 90. Квасова В.А., Леонтьева С.А., Гринберг Л.А. и др. // ЖАХ. 1986. 41. № 5. С. 928.
- 91. Angner K. // Analyt. Chem. 1976. 48. P. 2.
- 92. Angner K. // J. Chromatogr. Sci. 1976. 14. P. 381.
- 93. Vivileochia R., Thiebald M., Frei R.W.J. // J. Chromatogr. Sci. 1972. 10. P. 411.
- 94. *Klemm L.H., Reed D., Lind C.D.* // J. Org. Chem. 1957. 22. P.739.
- 95. Schenk G. // Analyt. Chem. 1965. 37. P. 372.
- 96. Harvey R.G., Halogen H. // J. Chromatogr. 1966. 25. P. 294.
- 97. Сакодынский К.И., Бражников В.В., Волков С.А. и др. Аналитическая хроматография. М., 1993.
- Snyder L.R. Principles of adsorption chromatography. N.Y., 1968.
- Modern practice of liquid chromatography // Ed. J.J. Kirkland. N.Y., 1974.
- 100. Liquid column chromatography // Ed. Z. Deyl. Amsterdam, 1975.
- 101. Glueckauf E. // Trans. Faraday Soc. 1955. 51. P. 34.
- 102. Lapidus L., Amundsen N.R. // J. Phys. Chem. 1952. 56. P. 984.

- 103. Giddings K., Eyring H. // J. Phys. Chem. 1955. 59. P. 416.
- 104. Van Deemter J.J., Zuiderweg F.J., Klinkenberg A. // Chem. Eng. Sci. 1956. **5**. N 6. P. 271.
- 105. Giddings K. Dynamics of Chromatography. N.Y., 1965.
- 106. Khan M.F. // Nature. 1960. 186. N 47. P. 800.
- 107. Criddle F. // Anal. Chem. 1951. 25. P. 1620.
- 108. Блундел Р., Гриффитс С., Вилсон Р. В. // Газовая хроматография. Труды III Международного симпозиума по газовой хроматографии в Эдинбурге. М., 1964. С. 461.
- 109. Ландберг Г.С., Казанский Б.А. Определение индивидуального углеводородного состава бензинов прямой гонки комбинированным методом. М., 1959. С. 43.
- 110. Snyder L. // J. Chromatogr. Sci. 1970. 8. P. 692.
- 111. *Лунский М.Х., Пейзанская И.А.* // Заводск. лаборатория. 1989. № 1. С. 3.
- 112. Егазарьянц С.В., Караханова Н.К. // Вестн. Моск. ун-та. Сер. 2. Химия. 2009. **50.** № 1. С. 40.
- 113. Егазарьянц С.В., Киселев А.В. // ЖАХ. 1988. **53.** № 4. С. 695.
- 114. Егазарьянц С.В. // Нефтехимия. 2009. 49. № 2. С. 36.
- 115. Егазарьянц С.В. // Жур. химич. технол. 2009. № 4. С. 47.
- 116. *Egazaryants S.V., Karakhanov E.A., Maximov A.K.* 31st International Sympos. on HPLC and related technique, Belgium, Gent, 2007, June 2007. P. 721.

Поступила в редакцию 12.01.09

CHROMATOGRAPHIC METHODS FOR THE PETROLEUM PRODUCTS ANALYSIS

Yegazariyants S.V.

(Division of Petroleum and Organic Catalysis)

The review is devoted to and analysis of different petroleum fractions by CGC, HPLC, massspectrometry, UV and IR spectroscopy. The methods of petrol, disel and jet fules quality control were summarized.

Key words: Petroleum, chromatography, adsorbent, separation, gasoline, naphtha, diesel-fuel.

Сведения об авторах: Егазарьянц Сергей Владимирович – ведущий науч. сотр. кафедры химии нефти и органического катализа химического факультета МГУ, канд. хим. наук (egaz@petrol.chem.msu.ru).