УДК 669.011.17

ОБЛАСТЬ СУЩЕСТВОВАНИЯ **5-**ФАЗЫ В СИСТЕМЕ Со-Cr-Ni-V ПРИ ТЕМПЕРАТУРЕ 800°С

Е.Г. Кабанова, Г.П. Жмурко, В.Н. Кузнецов, А.В. Леонов

(кафедра общей химии; e-mail: kabanova@general.chem.msu.ru)

В настоящей работе с использованием микроструктурного, рентгенофазового и локального рентгеноспектрального методов анализа проведено исследование фазовых равновесий в системе Co–Cr–Ni–V при температуре 800°C. Построены сечения изотермического тетраэдра с постоянным содержанием ванадия 10 и 20 ат. %.

Сплавы на основе никеля и кобальта, легированные хромом и ванадием, находят широкое применение в качестве жаропрочных конструкционных материалов. Однако в процессе длительной эксплуатации в этих сплавах при высокой температуре из гомогенного твердого раствора возможно выделение σ-фазы, обладающей высокой хрупкостью и твердостью, и как следствие резкое изменение физико-механических характеристик сплавов. Поэтому изучение свойств, условий образования и границ существования σ-фаз в многокомпонентных металлических системах представляет значительный практический интерес. В настоящей работе область существования σ-фазы изучали в четырехкомпонентной системе Co-Cr-Ni-V при температуре 800°С и содержании ванадия 10 и 20 ат.%.

Двойные и тройные системы, ограничивающие четырехкомпонентную систему Co-Cr-Ni-V, изучены достаточно подробно [1–10]. Во всех тройных системах при температуре, близкой к 800°С, реализуются фазовые равновесия с участием у-твердого раствора с ГЦК структурой на основе кобальта и никеля, β-твердого раствора с ОЦК структурой на основе Cr и V, а также о-фазы. В тройных системах Co-Cr-V и Co-Ni-V области существования о-фаз простираются от стороны Co-V до стороны Co-Cr [8] и Ni-V [9] соответственно; в системе Co-Cr-Ni область гомогенности σ-фазы проникает в тройную систему от стороны Со-Сг до 18 ат.% никеля [7], в системе Cr-Ni-V от стороны Ni-V до 32 ат.% хрома [10]. При содержании ванадия более 20 ат.% в фазовых равновесиях принимают участие интерметалические соединения Co₃V, Ni₃V и Ni₂V. Однако области гомогенности этих соединений в тройных системах очень невелики [9, 10].

В настоящей работе изучены и построены два сечения изотермического тетраэдра Co-Cr-Ni-V с

постоянным содержанием ванадия 10 и 20 ат.%. Для этой цели было синтезировано 16 и 24 сплава соответственно. Поскольку основной интерес в настоящем исследовании уделялся фазовым равновесиям с участием σ-фазы, составы синтезируемых сплавов выбирались вблизи ее предполагаемой области гомогенности. Сплавы выплавляли в электродуговой печи в атмосфере очищенного аргона, а затем отжигали при температуре 800°С в течение 1200 ч с последующей закалкой в холодную воду. Полученные образцы исследовали с помощью микроструктурного, рентгенофазового и локального рентгеноспектрального методов анализа.

Рентгенофазовый анализ проводили на дифрактометре "ДРОН-4" с использованием CuK_{α} -излучения. Расшифровку полученных рентгенограмм и расчет параметров элементарных ячеек фаз проводили с помощью программы STOE. Результаты рентгенографического исследования представлены в табл. 1.

Методом локального рентгеноспектрального анализа были исследованы сплавы, принадлежащие областям двух- и трехфазных равновесий. Составы фаз определяли с помощью сканирующего электронного микроскопа "JSM-820" ("JOEL") с энергодисперсионной приставкой AN 10/85S ("LINK"). Ускоряющее напряжение на катоде 15 кВ. В качестве аналитических использовались следующие линии характеристического излучения: K_{α} (Co), K_{β} (Cr), K_{α} (Ni) и K_{β} (V). Обработка результатов проводилась по программе ZAF. Результаты локального рентгеноспектрального анализа представлены в табл. 2. В некоторых случаях составы всех равновесных фаз определить не удалось из-за их малого содержания и мелкозернистой структуры. Поэтому надежно были установлены только составы σ-фазы и определены направления конод двухфазных равновесий. Следует отметить, что в четверной системе равновесные составы фаз не всегда находятся в плоскости сечения.

Характер фазовых равновесий в системе Ni–Co– Cr–V с содержанием ванадия 10 и 20 ат.%, установленный с помощью рентгенофазового и локального рентгеноспектрального методов анализа, подтвердили исследования микроструктуры. Микроструктуру сплавов изучали на микроскопе "Versamet-2" при увеличении в 150–600 раз. Для выявления фазового контраста применялось химическое травление поверхности образцов.

Сечения изотермического тетраэдра Co-Cr-Ni-V с содержанием ванадия 10 и 20 ат.% представлены на рисунке. При содержании 10 ат.% ванадия сечение в целом аналогично строению тройной системы Co-Cr-Ni при 800°C, установленному ранее [7]. Оно характеризуется обширной областью γтвердого раствора на основе кобальта и никеля, введение ванадия приводит к некоторому увеличению области гомогенности σ-фазы в четырехкомпонентной системе, максимальная растворимость никеля в ней соответствует 20,5 ат.%. Направлена область гомогенности σ-фазы к метастабильной σ-фазе грани Cr-Ni-V.

Растворимость Со и Ni в ОЦК-фазе незначительна. Как видно из результатов рентгенофазового анализа (табл. 1), параметры решетки ОЦК-фазы во всех двухфазных и трехфазных образцах остаются практически постоянными и близкими к значению периода решетки чистого хрома (2,8888 Å). Положение трехфазной области, соответствующей равновесию ОЦК+ГЦК+ σ , установлено с учетом соотношения интенсивностей реперных линий на рентгенограммах трехфазных образцов Co_{13,5}Cr₅₄Ni_{22,5}, Co_{13,5}Cr_{58,5}Ni₁₈ и Co₉Cr₆₃Ni₁₈ и по определенной локальным рентгеноспектральным анализом растворимости никеля в σ -фазе (табл. 2).

Сечение системы Co-Cr-Ni-V при содержании ванадия 20 ат.% представлено на рисунке б. В области, богатой хромом, оно аналогично сечению при содержании ванадия 10 ат.%. ОЦК-твердый раствор имеет незначительную область гомогенности: параметры решетки ОЦК-фазы близки к параметрам решетки соответствующих сплавов системы Cr-V. Растворимость никеля в о-фазе достигает ~27 ат.%. На сечении системы Co-Cr-Ni-V при 20 ат.% ванадия присутствует также протяженная область гомогенности ү-фазы с ГЦК-структурой, которая проникает в четырехкомпонентную систему со стороны Cr-Ni-V до 50-55 ат.% Со. По результатам рентгенофазового анализа сплавов Co₂₀Cr₁₅Ni₄₅V₂₀ и Со₅₀Сr₁₅Ni₁₅V₂₀ можно судить о глубине проникновения ГЦК-фазы в изотермический тетраэдр при содержании ванадия 20 ат.%. Рентгенограммы этих образцов были идентичны и содержали по две системы отражений: наиболее интенсивные линии на них соответствовали симметрии гранецентрированной кубической структуры. Присутствие второй фазы σ определялось по наличию очень слабых рефлексов ее реперных линий.

Сечения четырехкомпонентной системы Со–Сг–Ni–V при 800°С с постоянным содержанием ванадия, ат.%: a - 10, $\delta - 20$

Таблица 1

Фазовыи состав и параметры решетки ф	раз	
--------------------------------------	-----	--

		• • •	•		
Состав сплава	Фазовый состав	ГЦК	ОЦК	σ-фаза	
		<i>a</i> , Å	<i>a</i> , Å	<i>a</i> , Å	<i>c</i> , Å
$Co_9Cr_{63}Ni_{18}V_{10}$	ГЦК+ОЦК+σ	3,569(1)	2,883(1)	8,814(1)	4,546(2)
Co ₉ Cr ₅₈ Ni _{22,5} V ₁₀	ГЦК+ОЦК	3,577(1)	2,888(1)	-	-
Co _{13,5} Cr ₅₄ Ni _{22,5} V ₁₀	ГЦК+ОЦК+σ	3,570(1)	2,888(1)	8,820(1)	4,538(1)
Co _{13,5} Cr _{58,5} Ni ₁₈ V ₁₀	ГЦК+ОЦК+σ	3,567(1)	2,884(1)	8,819(2)	4,552(2)
Co _{13,5} Cr ₆₃ Ni _{13,5} V ₁₀	ОЦК+о	_	2,886(1)	8,820(2)	4,569(2)
Co ₁₈ Cr _{58,5} Ni _{13,5} V ₁₀	ОЦК+о	_	2,883(1)	8,818(2)	4,550(2)
$Co_{18}Cr_{54}Ni_{18}V_{10}$	ОЦК+о	_	_	8,806(2)	4,548(2)
Co _{22,5} Cr _{49,5} Ni ₁₈ V ₁₀	ГЦК +σ	3,575(1)	-	8,805(2)	4,543(2)
Co _{22,5} Cr ₅₄ Ni _{13,5} V ₁₀	σ-фаза	-	-	8,795(1)	4,549(2)
Co _{22,5} Cr ₆₃ Ni _{4,5} V ₁₀	ОЦК+о	-	2,885(1)	8,819(1)	4,549(1)
Co ₂₇ Cr _{58,5} Ni _{4,5} V ₁₀	ОЦК+о	-	2,885(1)	8,819(1)	4,550(1)
Co ₂₇ Cr ₄₉ Ni _{13,5} V ₁₀	σ-фаза	-	-	8,786(1)	4,541(1)
Co _{31,5} Cr ₄₅ Ni _{13,5} V ₁₀	ГЦК +σ	3,564(1)	-	8,785(2)	4,533(1)
Co _{31,5} Cr ₅₄ Ni _{4,5} V ₁₀	σ-фаза	-	-	8,781(2)	4,538(1)
Co _{40,5} Cr ₄₅ Ni _{4,5} V ₁₀	σ-фаза	-	-	8,760(2)	4,537(2)
Co ₄₅ Cr _{40,5} Ni _{4,5} V ₁₀	ГЦК +о	3,564(1)	-	8,773(1)	4,544(1)
Co ₅ Cr ₅ Ni ₇₀ V ₂₀	ГЦК+Ni ₃ V	3,559(1)	Ni ₃ V	3,543(1)	7,202(4)
Co ₅ Cr ₁₅ Ni ₇₀ V ₂₀	ГЦК	3,554(1)	-	_	-
Co ₅ Cr ₂₅ Ni ₇₀ V ₂₀	ГЦК+ОЦК+σ	3,556(1)	2,890(1)	очень	мало
Co ₂₀ Cr ₁₅ Ni ₄₅ V ₂₀	ГЦК +о	3,574(1)	- 8,801(1)		4,536(1)
Co ₃₅ Cr ₁₀ Ni ₃₅ V ₂₀	ГЦК+ Со ₃ V	3,570(1)	Co ₃ V	5,012(3)	12,18(2)
Co ₂₅ Cr ₂₅ Ni ₃₀ V ₂₀	ГЦК +о	3,559(1)	-	8,828(3)	4,547(2)
Co20Cr30Ni30V20	ГЦК +о	3,553(1)	-	8,832(1)	4,555(1)
Co10Cr40Ni30V20	ГЦК+ОЦК+σ	3,5247	2,894(2)	8,859(2)	4,554(1)
Co5Cr45Ni30V20	ГЦК+ОЦК+σ	3,523(1)	2,8957	очень	мало

Продолжение табл.	1
-------------------	---

Состав сплава	Фазовый состав	ГЦК	ОЦК	σ-фаза	
		<i>a</i> , Å	<i>a</i> , Å	<i>a</i> , Å	<i>c</i> , Å
Co ₃₀ Cr ₂₅ Ni ₂₅ V ₂₀	ГЦК +σ	3,526(1)	-	8,805(2)	4,560(2)
Co ₂₅ Cr ₃₀ Ni ₂₅ V ₂₀	ГЦК + σ	3,529(1)	_	8,805(1)	4,556(2)
$Co_{15}Cr_{40}Ni_{25}V_{20}$	σ-фаза	_	_	8,838(1)	4,557(1)
Co ₁₀ Cr ₄₅ Ni ₂₅ V ₂₀	ГЦК+ОЦК+σ	3,558(1)	2,888(1)	8,834(1)	4,569(1)
Co ₅₀ Cr ₁₅ Ni ₁₅ V ₂₀	ГЦК+ σ	3,5524	_	очень	мало
$Co_{40}Cr_{25}Ni_{15}V_{20}$	ГЦК+ σ	3,537(1)	_	8,817(1)	4,549(1)
Co ₃₅ Cr ₃₀ Ni ₁₅ V ₂₀	ГЦК+ σ	3,542(1)	_	8,811(2)	4,560(2)
$Co_{25}Cr_{40}Ni_{15}V_{20}$	σ-фаза	-	-	8,822(1)	4,550(1)
$Co_{20}Cr_{45}Ni_{15}V_{20}$	ОЦК+б	-	2,894(1)	8,835(7)	4,558(4)
Co ₁₀ Cr ₅₅ Ni ₁₅ V ₂₀	ОЦК+б	-	2,8957	8,841(1)	4,555(1)
Co ₇₀ Cr ₅ Ni ₅ V ₂₀	ГЦК+ Со ₃ V	3,5244	Co ₃ V	4,979(1)	12,296
Co ₅₀ Cr ₂₅ Ni ₅ V ₂₀	ГЦК +σ	3,5296	-	8,802(1)	4,543(1)
$Co_{40}Cr_{35}Ni_5V_{20}$	σ-фаза	-	-	8,804(2)	4,541(2)
Co ₃₀ Cr ₄₅ Ni ₅ V ₂₀	σ-фаза	-	-	8,831(1)	4,551(1)
Co ₂₀ Cr ₅₅ Ni ₅ V ₂₀	ОЦК+б	-	2,894(1)	8,856(3)	4,563(1)

Положение трехфазной области ОЦК + ГЦК + σ было установлено по результатам локального рентгеноспектрального и рентгенофазового анализов трехфазных образцов $Co_5Cr_{25}Ni_{70}V_{20}$, $Co_{10}Cr_{40}Ni_{30}V_{20}$, $Co_5Cr_{45}Ni_{30}V_{20}$ и $Co_{10}Cr_{45}Ni_{25}V_{20}$.

В результате упорядочения γ -твердого раствора на стороне $Co_{80}V_{20}$ -Ni $_{80}V_{20}$ изоконцентрационного треугольника появляются области двухфазного равновесия γ + Co₃V и γ + Ni₃V.

Область, соответствующая трехфазному равновесию $Ni_3V + Ni_2V + \gamma$, приведена на сечении с содержанием ванадия 20 ат.% ориентировочно, на основании результатов исследования тройной системы Cr–Ni–V [10]. Трехфазная область $Ni_3V + Co_3V + \gamma$ нанесена на изоконцентрационное сечение с учетом результатов рентгенографических исследований по разрезу $Co_3V - Ni_3V$, выполненных в работе [9]. Хотя авторы [9] ошибочно полагали, что указанные соединения образуют между собой непрерывный ряд твердых растворов, при соотношении Ni:Co = 3:1 на кривых зависимости параметров решетки наблюдался резкий излом. Такая зависимость позволила предположить, что в этой области составов в действительности существует двухфазная область $Co_3V + Ni_3V$.

Таким образом, при сравнении сечений изотермического тетраэдра Co–Cr–Ni–V при содержании ванадия 10 и 20 ат.% видно, что увеличение содержания ванадия приводит к увеличению области существования σ-фазы от 18 [7] до 27 ат.% Ni.

г	9	б	π	и	п	9	2
L	а	0	Л	И	Ц	а	7

Результаты локального рентгеноспектрального анализа сплавов системы Co-Cr-Ni-V

C	остав сплава	по шихте, ат	.%	Фазовый Состав фа	Состав фазы	и Состав фазы, ат.%			
Co	Cr	Ni	V	состав		Co	Cr	Ni	V
									v
Сплавы с содержанием ванадия 10 ат.%									
13,5	54	22,5	10	β+γ+σ	σ-фаза	16,08	54,14	19,0	10,78
13,5	63	13,5	10	$\beta + \sigma$	σ-фаза	16,13	54,33	17,24	12,3
22,5	63	4,5	10	$\beta + \sigma$	σ-фаза	24,18	60,301	5,64	9,87
22,5	49,5	18	10	$\gamma + \sigma$	σ-фаза	21,7	50,6	16,5	11,2
31,5	45	13,5	10	$\gamma + \sigma$	σ-фаза	29,05	47,6	12,5	10,85
Сплавы с содержанием ванадия 20 ат.%									
35	10	35	20	Co ₃ V+γ	Co ₃ V	42,9	8,0	19,2	28,9
10	40	30	20	β+γ+σ	σ-фаза	11,4	39,7	27,1	21,8
30	25	25	20	γ+σ	σ-фаза	25,1	35,7	20,8	18,4
35	30	15	20	γ+σ	σ-фаза	34,0	34,5	12,9	18,6
					ГЦК-фаза	35,4	18,3	23,1	22,2
20	55	5	20	β+ σ	σ-фаза	23,62	50,18	5,72	20,5

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ishida K., Nishizawa T.* // Bull. Alloy Phase Diagrams. 1990. **11**. P. 357.
- 2. Massalski T.B. // Binary Alloy Phase Diagrams. Ohio, 1986.
- 3. Smith J.F. // J. Phase Equilibria. 1991. 12. P. 324.
- 4. Nash P. // Bull. Alloy Phase Diagrams. 1986. 7. P. 465.
- 5. Lee B.-J. // Z. Mettalkde. 1992. 83. P. 292.
- Smith J.F., Carlson O.N., Nash P.G. // Phase diagrams of binary nickel alloys / Ed. P. Nash. Ohio, 1986. P. 361.
- 7. Жмурко Г.П., Кабанова Е.Г., Кузнецов В.Н., Леонов А.В.// Вест. Моск. ун-та. Сер. 2. Химия. 2008. **49**. С.283.
- 8. *Кузнецов В.Н., Жмурко Г.П., Тойбаев Ж.Н. и др. //* Вест. Моск. ун-та. Сер. 2. Химия. 2001. **42**. С. 121.
- 9. Koester W., Sperner F. // Z. Metallkde. 1957. 43. P. 540.
- 10. Kodentzov A.A., Dunaev S.F., Slusarenko E.M. // J. Less-Common Met. 1987. 135. P. 15.

Поступила в редакцию 31.03.08

THE FIELD OF EXISTENCE OF THE σ-PHASE OF THE Co-Cr-Ni-V QUATERNARY AT 800°C

E.G. Kabanova, G.P. Zhmurko, V.N.Kuznetsov, A.V. Leonov

The field of existence of the σ-phase and phase equilibria with its participation on the sections of the Co–Cr–Ni–V quaternary with 10 and 20 at. % V at 800°C were studied using metallography, XRD and EPMA.