УДК 543.42

ИК-СПЕКТР И СТРУКТУРА 2-ТИЕНИЛ-N-МЕТИЛ-ФУЛЛЕРЕНО-ПИРРОЛИДИНА

В.И. Корепанов, А.А. Попов, В.М. Сенявин, М.А. Юровская, Э.С. Чернышова

(кафедра физической химии, кафедра органической химии; e-mail: Korepanov@phys.chem.msu.ru)

Изучены ИК- и ¹Н-ЯМР-спектры 2-тиенил-N-метил-фуллеренопирролидина. Полная интерпретация спектров проведена на основании расчетов с использованием теории функционала плотности. Расчетными и экспериментальными методами исследован конформационный состав соединения.

Интенсивно развивающееся направление современных исследований в области создания новых источников энергии – разработка фотогальванических элементов, а также систем искусственного фотосинтеза на основе донорно-акцепторных диад [1-3]. Принцип их действия основан на том, что один из компонентов диады (донор) при поглощении кванта света переходит в возбужденное электронное состояние, релаксация из которого протекает с переносом электрона на другой компонент (акцептор) с образованием состояния с разделенными зарядами. Интерес к фуллеренам в этой области обусловлен тем, что для них характерно высокое сродство к электрону, вследствие чего они могут выступать в качестве эффективных акцепторов электронов в фотогальванических элементах [4]. В настоящее время синтезировано множество диад фуллерена С60 с такими донорами, как порфирины, политиофены, хлорины, ферроцен и др. Одним из наиболее широко применяемых методов синтеза диад является реакция Прато: реакция биполярного присоединения С₆₀ с азометинилидами [1], в результате которой образуются N-метилфуллеренопирролидины общей формулы C₆₀(CH₂)₂N(CH₃)CHR с донорными группами (R) заместителей у гетероцикла.

Неплоское строение пирролидинового цикла, внутреннее вращение группы R, а также экваториальноаксиальная изомерия метильной группы приводят к возможности сосуществования у таких диад нескольких конформеров. Очевидно, свойства диады зависят от ее строения, прежде всего от относительного пространственного расположения донорного и акцепторного фрагментов, которое может быть различным у разных конформеров.

Несмотря на значительный интерес к диадам на основе N-метилфуллеренопирролидинов, исследования строения и конформационного состава (в частности, спектральными методами) таких молекул не проводилось. Настоящая работа посвящена изучению расчетными и экспериментальными методами строения и спектров 2-тиенил-N-метил-фуллеренопирролидина (ТМФП, рис. 1).

Экспериментальная часть и расчетные процедуры

Синтез ТМФП проведен по известной методике [5]; ИК-спектр соединения, спрессованного в таблетки с бромидом калия, зарегистрирован на ИК-Фурье спектрометре "*IFS-113v*" ("*Bruker*", Германия) в диапазоне 400–4000 см⁻¹ с разрешением 0,5 см⁻¹; спектр ¹Н ЯМР получен на спектрометре "*VXR-400*"

Рис. 1. Модель молекулы 2-тиенил-N-метилфуллеренопирролидина

Рис. 2. Структуры четырех конформеров ТМФП

("Varian", Германия) при использовании в качестве растворителя смеси сероуглерод/ацетон-d₆ 9/1.

Оптимизацию геометрических параметров молекулы, расчеты ИК-спектров и протонных сдвигов проводили по программе "Природа" [6] с использованием обобщенно-градиентного функционала РВЕ [7] и трехэкспонентного базиса, дополненного двумя наборами поляризационных функций d-типа (TZ2P). Вспомогательные расчеты с использованием гибридного функционала B3LYP, а также с применением теории возмущения Меллера-Плессе второго порядка (MP2) проводили с помощью пакета PC GAMESS [8]. Прямые и обратные колебательные задачи решали с использованием пакета DISP [9], полученные в результате расчетов квантово-механические силовые поля переводили в систему внутренних координат, состоящую из изменений длин всех связей, валентных углов, а также неплоских и торсионных координат.

Результаты и обсуждение

Расчеты геометрических параметров, относительных энергий конформеров и барьеров превращений

При оптимизации геометрических параметров молекулы ТМФП на поверхности потенциальной энергии было локализовано восемь неэквивалентных минимумов, что обусловлено инверсией гетероцикла, возможностью внутреннего вращения тиофенового фрагмента, а также экваториальным или аксиальным положением метильной группы относительно средней плоскости пирролидинового кольца; при этом каждый из 8 конформеров дополнительно обладает еще одной энантиомерной формой.

На рис. 2 приведены некоторые из структур, отвечающие минимумам на ППЭ и иллюстрирующие пути возможных внутримолекулярных структурных превращений: из наиболее устойчивого (см. ниже) конформера, обозначенного условно 1е и характеризующегося экваториальным положением группы СН₃, поворотом плоскости тиофенового кольца на угол около 40° относительно плоскости угла NCC (при этом атом серы расположен ближе к атому азота) при внутреннем вращении фрагмента -C₄SH₃ на 180° можно получить конформер 2е; при инверсии цикла (с одновременным поворотом тиофенового фрагмента) образуется конформер 4е; конформер 1а отличается аксиальным положением CH₃-группы (и также некоторым изменением угла поворота фрагмента – С₄SH₂). Функционализация значительно искажает геометрию фуллеренового каркаса вблизи места присоединения. Наибольшую длину (1,605 Å) по данным расчета имеет связь С-С, по которой произошло присоединение гетероцикла; это значение заметно превышает длину обычной одинарной связи в углеродном каркасе и свидетельствует о значительных напряжениях вблизи места функционализации. Прилежащие к ней "одинарные" связи каркаса удлиняются на 0,05-0,1 Å, остальные связи фуллеренового фрагмента практически не изменяются. Некоторые геометрические параметры и относительные энергии восьми по-

Таблица 1

Параметр	1e	2e	3e	4e	1a	2a	3a	4a
E (PBE/TZ2P)	0,0	2,4	18,3	16,4	27,7	26,0	31,4	28,3
C^2-N^1	1,462	1,462	1,457	1,457	1,466	1,466	1,467	1,467
C ³ –N ¹	1,455	1,455	1,451	1,451	1,447	1,446	1,448	1,450
C ⁶ –N ¹	1,465	1,465	1,469	1,464	1,461	1,461	1,458	1,459
C ³ -C ⁴	1,557	1,556	1,558	1,558	1,599	1,600	1,585	1,587
$C^4 - C^5$	1,605	1,605	1,608	1,607	1,596	1,596	1,598	1,596
C^5-C^6	1,590	1,590	1,589	1,589	1,632	1,632	1,636	1,632
$C^6 - C^7$	1,495	1,499	1,515	1,514	1,496	1,497	1,512	1,507
$\chi(N^1,C^3,C^4,C^5)$	26,1	26,8	-27,2	-27,4	22,2	22,1	-24,8	-23,5
$\chi(N^1, C^6, C^5, C^4)$	-28,4	-28,3	24,3	24,3	-26,5	-26,7	15,6	16,2
$\chi(N^1,C^6,C^7,S^8)$	-39,8	141,3	115,2	-54,7	-67,7	110,5	160,0	-36,6
$\chi(C^2, N^1, C^3, C^4)$	-170,1	-170,9	177,7	178,7	91,6	91,6	-93,6	-94,5

Геометрические параметры (Е, град) и относительные энергии (кДж/моль) восьми конформеров молекулы ТМФП по данным расчета PBE/TZ2P

тенциально возможных конформеров ТМФП, рассчитанные методом PBE/TZ2P с учетом энергий нулевого колебательного уровня, приведены в табл. 1, из данных которой следует, что большей устойчивостью обладают конформеры с экваториальной ориентацией метильной группы, а среди последних менее выгодны те, у которых тиофеновый заместитель расположен напротив неподеленной электронной пары атома азота. Два наиболее устойчивых конформера (1е и 2е) обладают по данным квантово-механических расчетов небольшой разностью энергий (2,4 кДж/моль с уче-

Рис. 3. Нумерация атомов, использованная в работе

том энергии нулевого колебательного уровня), и, следовательно, можно ожидать их сосуществования: рассчитанный при 298 К равновесный состав представляет собой смесь конформеров **1e** и **2e** в соотношении 74:26 при пренебрежимо малых концентрациях остальных конформеров.

Для оценки энергетики возможных конформационных превращений в молекуле ТМФП нами были построены одномерные сечения поверхности потенциальной энергии для внутренних координат, отвечающих конформационным переходам: двугранного угла SCCN - для вращения тиофенового заместителя, линейной комбинации двугранных углов (C², N¹, C³, C⁴) и (C^2, N^1, C^6, C^5) – для описания движения метильной группы и комбинации этих углов с углами (N¹, C³, C^4C^5) и (N¹, C³, C⁵C⁴) – для инверсии цикла. Нумерация атомов, использованная в настоящей работе, представлена на рис. 3. Затем была проведена оптимизация геометрических параметров переходных состояний, что позволило оценить величины барьеров переходов. Пути и энергии возможных переходов представлены на рис. 4, откуда следует, что барьеры превращений, отсчитанные от соответствующих ми-

Таблица 2

	Химический сдвиг, м.д.							
Протон		эксперимент						
	1e	2e	3e	4e				
9	5.31	5.13	6.07	6.35	5.32			
10	4.71	4.69	4.41	4.44	5.00			
11	4.18	4.16	5.07	5.29	4.30			
12	2.98	2.90	2.53	2.48				
13	2.73	2.69	2.57	2.63				
14	1.75	1.76	2.01	2.25				
СН ₃ (среднее)	2.49	2.45	2.37	2.45	2.91			
15	7.00	7.35	7.57	6.97	7.02			
16	6.60	6.76	6.95	6.71	7.04			
17	7.05	6.82	6.90	7.16	7.39			

Экспериментальные и рассчитанные химические сдвиги протонов ТМФП

нимумов, для всех типов движений лежат в пределах примерно от 20 до 50 кДж/моль (20,8–41,1 для переходов экваториальный ↔аксиальный; 19,4–52,3 для внутреннего вращения тиофенового радикала и 21,1–

Рис. 4. Пути и барьеры переходов между конформерами ТМФП (кДж/моль). В скобках приведены энергии конформеров

36,9 кДж/моль для инверсии пирролидинового цикла), причем наибольшая величина отвечает именно переходу между двумя наиболее устойчивыми конформерами, что обусловлено, вероятно, стерическими затруднениями при вращении тиофенового заместителя вокруг связи C₆-C₇, возникающими из-за небольшого расстояния до фуллеренового каркаса.

¹Н-ЯМР-спектры ТМФП

Число зарегистрированных в ¹Н-ЯМР спектрах ТМФП сигналов соответствует ожидаемому для одного конформера, что может быть обусловлено как присутствием в растворе единственной формы, так и усреднением сигналов от нескольких конформеров вследствие быстрых переходов между ними (см. например, [10]), где в спектрах ¹⁹F ЯМР соединения C₆₀FCF₃ при комнатной температуре наблюдали один усредненный сигнал от атомов фтора CF₃-группы при барьере ее внутреннего вращения около 50 кДж/моль).

Дополнительная информация о конформационном составе соединения может быть получена из сопоставления наблюдаемых величин химических сдвигов

Рис. 5. Экспериментальный (*a*) и расчетные ИК-спектры **1e** (*б*) и **2e** (*в*) конформеров ТМФП. Звездочками помечены линии, обусловленные примесями растворителей

протонов с рассчитанными с использованием процедуры GIAO-PBE/TZ2P для четырех наиболее устойчивых конформеров (табл. 2). Анализ данных таблицы приводит к выводу о лучшем согласии с экспериментом величин, рассчитанных для конформера 1е.

ИК-спектры ТМФП

Экспериментальный ИК-спектр ТМФП приведен на рис. 5. Вследствие отсутствия симметрии и большого числа атомов в молекуле спектр соединения весьма сложен и представляет собой практически непрерывный набор полос в области 400–1650 см⁻¹, сопровождаемый несколькими полосами в области СН-валентных колебаний.

Интерпретацию спектров проводили на основании квантово-механических расчетов силовых полей и интенсивностей спектральных линий. Ранее нами было показано, что использование обобщенно-градиентного функционала РВЕ [7] в сочетании с трехэкспонентным базисом, дополненным двумя наборами поляризационных функций d-типа, позволяет достичь удовлетворительного (со среднеквадратичным отклонением рассчитанных частот от экспериментальных в 6 см⁻¹) описания колебательных спектров каркасных углеродных структур без применения процедуры масштабирования силовых полей [11]. В то же время такие процедуры могут оказаться необходимыми для адекватного описания данным методом силовых полей присоединенных к фуллереновому каркасу фрагментов. С целью получения необходимых масштабирующих множителей нами были проведены предварительные расчеты колебательных спектров модельных молекул тиофена и N-метилпирролидина. При расчетах первой молекулы использовано отнесение спектров из работы [12] и – в результате решения обратной задачи по методу Пулаи [13] - получены масштабирующие множители в узком интервале значений от 0,9670 до 1,0949. Для молекулы Nметилпирролидина, напротив, использование литературного отнесения [14] приводит к неправдоподобно завышенным значениям масштабирующих множителей для координат С-С- и С-N-связей. Поэтому нами были проведены дополнительные расчеты силового поля молекулы на уровнях B3LYP/6-311G(d,p), MP2/cc-pVTZ и PBE/TZ2P и предложено иное, чем в [14], отнесение спектров. Значения масштабирующих множителей, рассчитанные в рамках всех указанных выше подходов при использовании литературного и предложенного нами отнесений спектров, сопоставлены в табл. 3.

Таблица З

	~			NT .
Значения	масштабирующих	множителей для	силовых полей молек	улы N-метилпирропилина
Jina remm	macin raompy tomina	Minomini ceren gein	chilobbia notich motien	y the internet in potting internet

Координата	Масштабирующий множитель							
	отнес	ение спектров	[14]	настоящая работа				
	B3LYP/ 6-311G**(d, p)	MP2/ cc-pVTZ	PBE/TZ2P	B3LYP/ 6-311G**(d, p)	MP2/ cc-pVTZ	PBE/TZ2P		
QCC	1.3570	1.2845	1.3743	1.0658	1.0179	1.0801		
QCN	1.2496	1.2354	1.3314	0.9741	0.9759	1.0432		
үНСС	0.8780	0.8567	0.8709	0.9632	0.9345	0.9058		
γHCN	0.8655	0.8497	1.1021	0.9074	0.8781	1.0756		
γCNC	0.7654	0.70303	0.8144	1.0475	0.9431	1.0903		
γΝCC	0.4441	0.5014	0.9405	1.0263	1.0646	1.0231		
rms_{ov}, cm^{-1}	18.2	23.0	17.5	15.8	24.5	14.2		

Представленные в последней колонке таблицы множители (вместе с соответствующими множителями для фрагмента тиофена) были использованы затем для масштабирования квантовомеханических силовых полей, рассчитанных для двух наиболее устойчивых конформеров молекулы ТМФП. Результаты расчета сравнены с экспериментальными данными на рис. 5. Рассчитанные для **1e** и **2e** конформеров спектры весьма схожи между собой, некоторые различия ожидаются лишь в областях 830–870 и 1200–1350 см⁻¹. При этом экспериментальному спектру несколько лучше соответствует спектр, рассчитанный для **1e** конформера, что позволяет сделать вывод о преобладании последнего в кристалле соединения.

Отнесение наблюдаемых в спектре полос (табл. 4, первая колонка) проводили с помощью анализа нормальных координат, для наглядности отнесение проведено также в терминах нормальных колебаний исходных молекул фуллерена, тиофена и N-метилпирролидина (в таблице приведены также частоты их колебаний). Полный набор рассчитанных частот колебаний ТМФП и результаты нормально-координатного анализа могут быть получены от авторов.

В области 400–800 см⁻¹ сильные линии отвечают в основном колебаниям фуллерена (табл. 4). Компоненты моды $F_{1u}(1)$ исходного фуллерена смешаны по форме с компонентами $H_u(2)$ -моды и наблюдаются в виде очень интенсивных полос в узком интервале 526–532 см⁻¹; группа пиков средней интенсивности 553–598 см⁻¹ относится к производным колебания $F_{lu}(2)$, смешанным по формам с $F_{lg}(1)$ - и $G_g(2)$ -модами. Компоненты пятикратно вырожденных мод $H_g(3)$, $H_u(4)$ и $H_g(4)$ с небольшими вкладами трех- и четырехкратно вырожденных мод проявляются в спектре со средними и низкими интенсивностями в интервалах 694–715, 726–746 и 758–788 см⁻¹ соответственно. Очень сильная линия при 700 см⁻¹ относится к колебанию фрагмента тиофена, описываемому выходом атомов водорода из плоскости кольца; валентное С–S колебание наблюдается при 858 см⁻¹ и обладает средней интенсивностью (табл. 4). В исходном соединении эти колебания наблюдаются соответственно при 722 и 872 см⁻¹ [12].

В диапазоне 800–1100 см⁻¹ в спектре проявляются колебания фуллеренового каркаса, часто смешанные по форме с валентными колебаниями пирролидинового фрагмента. Наиболее высокой интенсивностью в области 1100–1600 см⁻¹ обладают полосы С–С и С–N валентных колебаний и деформационных НСС- и НСN-колебаний аддендов (табл. 4). $F_{1u}(3)$ - и $F_{1u}(4)$ -моды фуллерена наблюдаются в спектрах производного в интервалах 1143–1194 и 1424–1436 см⁻¹ в виде линий средней и высокой интенсивности. Остальные колебания углеродного каркаса в данном диапа-

Таблица 4

ТМФП		C ₆₀		Адденд		
V _{эксп} , см ⁻¹	V _{расчетн} , см ⁻¹	v, см ⁻¹	отнесение	v, см ⁻¹	отнесение (NMP)	отнесение (тиофен)
3067	3074			3086		vCH
2976	2982			2958	vCH	
2920	2935			2877	vCH	
2782	2764			2771	vCH	
2738	2738			2754	vCH	
1558	1563	1567	Hg(8)			
1538	1531			1504		vCC+bHCC
1518, 1507, 1489	1518, 1508, 1485	1525 1499	$F_{2u}(5)$ $G_g(6)$			
1471	1461			1458	δΗСН	
1462	1451			1448	δΗСН	
1439	1436			1409		vCC+8HCC
	1431, 1429, 1419, 1405	1429, 1425, 1418	F _{1u} (4)	1418	δΗCH+δΗCN	
1436, 1429, 1424, 1419,1412			H _g (7)			
			G _u (6)			
1334	1335	1342	H _u (6)			
1305	1308	1311	Gg(5)			
1280, 1267, 1231	1275, 1266, 1222	1270	$F_{1g}(3)$			
		1232	$H_g(6)$	1000		21100
1244	1245			1256		бНСС
1231, 1210	1222, 1211	1214	H _u (5)			
1217	1215			1150	δHCC+δHCN+vCN	
1194, 1182, 1179, 1162,	1193, 1177, 1173, 1161,	1182	$F_{1u}(3)$			
1151	1140	1168	$F_{2u}(4)$			
1188	1179			1150	vCN+8HCC+8HCN	
1128	1127			1115	δHCC+δHCN	
1122, 1108, 1079, 1068	1117, 1104, 1084, 1065	1099	$H_g(5)$			
1000	1005	10/9	G _g (4)	1005		STIGG: CG
1090	1085			1085		ohcc+vcc
1029	1028			1039	δHCN+vCC+vCN	
1001, 918, 905	988, 920, 908	973 962	A_u $G_u(4)$			
993, 936	982, 933	956	F _{2u} (3)	965	vCC+&CCC+&NCC+&HCN	
918	920			943	vCC	
905, 898	908, 902			898		ρСН
	1		-	I		1

Расчетные и экспериментальные частоты колебаний и отнесение ИК-спектра ТМФП

Продолжение табл. 4

858	863			872		vCS+\deltaCCC+6SCC
846, 839, 833, 826	853, 849, 839, 837	927	F _{1g} (2)	839		vCS
		827		867		ρСН
805, 798, 793	813, 810, 808	796	F _{2g} (3)			
		775	G _u (3)			
788, 785, 780, 775	792, 776, 772, 771		Hg(4)			
		757	F _{2g} (2)	751		vCS+&CCC+&SCC
769, 761, 758, 751, 746	767, 763, 759, 751, 747	757	Gg(3)	/31		
		753	G _u (2)			
746, 737, 726	747, 738, 728	739	H _u (4)			
742	744			787	δHCC+δHCN	
715, 711, 706,700	714, 711, 706, 702	712	$\begin{cases} F_{2u}(2) \\ H_g(3) \end{cases}$	715		рСН
694	692			683		ρСН
694, 656	692, 657	668	H _u (3)			
640	638			608		δCCC+δSCC+vCS
609	607			572	δCCC+δNCC+vCC+vCN	
598	598			615	δCCC+δNCC+δCNC	
576, 571, 567, 553	576, 572, 564, 553	575	$F_{1u}(2)G_{g}(2)$			
586, 536	586, 533			565		τCCCC+τSCCC
561, 550	555, 550	553	F _{2g} (1)			
553, 536	553, 533	533	H _u (2)			
532, 526	524, 523	526	F _{1u} (1)			
495	498			452		τCCCC+τSCCC
488, 485, 479	484, 482, 476	496 485	A _g (1) G _g (1)			

зоне практически не наблюдаются, за исключением нескольких линий средней интенсивности при 1210–1238 см⁻¹, $(H_u(5)$ - и $H_g(6)$ -моды фуллерена) и 1473 см⁻¹ ($A_g(2)$ -мода).

В области СН-валентных колебаний в спектре наблюдаются пять интенсивных линий, относящихся к колебаниям метилпирролидинового фрагмента, причем частоты ниже 2800 см⁻¹ обусловлены колебаниями с участием так называемых "больмановских" атомов водорода, расположенных напротив неподеленной электронной пары атома азота [14, 15].

Заключение

Таким образом, в настоящей работе экспериментальными и расчетными методами изучен конформационный состав 2-тиенил-N-метил-фуллеренопирролидина. По результатам квантовохимических расчетов установлено, что соединение может существовать в виде смеси 8 конформеров с разностями энергий от 2,4 до 31,4 кДж/моль с барьерами переходов между ними в интервале 19,4–52,3 кДж/моль. Показано, что ¹Н-ЯМР-спектр соединения в растворе может отвечать как одному конформеру, так и равновесной смеси двух наиболее устойчивых форм, в то время как ИКспектр твердого вещества может быть интерпретирован, исходя из присутствия одного (наиболее устойчивого) конформера с экваториальным положением метильной группы и углом поворота тиофенового кольца в 39,8° относительно плоскости угла NCC. Проведено полное отнесение спектров соединения в терминах нормальных колебаний составляющих диаду фрагментов фуллерена, тиофена и N-метилпирролидина.

Работа выполнена при частичной финансовой поддержке грантов РФФИ № 05-03-32135 и № 05-07-98001.

СПИСОК ЛИТЕРАТУРЫ

- Yurovskaya M.A., Trushkov I.V. // Russ. Chem. Bull. 2002. 51. P. 367.
- 2. Imahori H. // Org. and Biomol. Chem. 2004. 2. P. 1425.
- 3. Guldi D.M., Prato M. // Acc. Chem. Res. 2000. 33. P. 695.
- 4. Imahori H., Kimura M., Hosomizu K., Sato T., Ahn T.K., Kim S.K., Kim D., Nishimura Y., Yamazaki I., Araki Y., Ito O., Fukuzumi S. // Chem. Eur. J. 2004. 10. P. 5111.
- Maggini M., Scorrano G., Prato M. // J. Am. Chem. Soc. 1993. 115. P. 9798.
- 6. Лайков Д.Н., Устынюк Ю.А. // Изв. РАН. Сер. химич. 2005. **3**. С. 804.
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996.
 77. P. 3865.
- Granovsky A.A. PC GAMESS, http://classic.chem.msu.su/ gran/gamess/index.html.

- 9. Кочиков И.В., Курамшина Г.М., Пентин Ю.А., Ягола А.Г. // Обратные задачи колебательной спектроскопии. М., 1993.
- Kareev I.E., Quicones G.S., Kuvychko I.V., Khavrel P.A., Ioffe I.N., Goldt I.V., Lebedkin S.F., Seppelt K., Strauss S.H., Boltalina O.V. // J. Am. Chem. Soc. 2005. 127. P. 11497.
- Попов А.А. Колебательные спектры и структура производных фуллеренов С₆₀ и С₇₀. Дис. ... канд. хим. наук. М., 2003.
 Kochikov I.V., Tarasov Y.I., Spiridonov V.P., Kuramshina
- Kochikov I.V., Tarasov Y.I., Spiridonov V.P., Kuramshina G.M., Rankin D.W.H., Saakjan A.S., Yagola A.G. // J. Mol. Struct. 2001. 567-568. P. 29.
- Pulay P. / Modern Theoretical Chemistry. / Ed. Schaefer III, H. F. N.-Y., 1977. 4. P. 153.
- 14. *Billes F., Geidel E. //* Spec. Acta Part A: Molecular and Biomolecular Spectroscopy. 1997. **53**. P. 2537.
- 15. Bohlmann F. // Ang. Chem. 1957. 69. P. 641.

Поступила в редакцию 04.12.06

INFRARED SPECTRUM AND STRUCTURE OF 2-THIENYL-N-METHYL-FULLEROPYRROLIDINE

V.I. Korepanov, A.A. Popov, V.M. Senyavin, M.A. Yurovskaya, E.S. Chernyshova

(Division of Physical Chemistry, Division of Organic Chemistry)

Infrared and ¹H-NMR spectra of 2-thienyl-N-methyl-fulleropyrrolidine are studied. Complete interpretation of the spectra was performed on the basis of density functional theory calculations. Conformational composition was analyzed by means of both computational and experimental methods.