УДК 547.836.3'75.07

СИНТЕЗ ФУНКЦИОНАЛЬНО ЗАМЕЩЕННЫХ ПИРРОЛО[3,2-*f*]ХИНОЛОНОВ ИЗ 6-МЕТИЛ-2-ФЕНИЛ-И 1,6-ДИМЕТИЛ-2-ФЕНИЛ-5-АМИНОИНДОЛОВ

С.А. Ямашкин*, Г.А. Романова*, М.А. Юровская

(кафедра органической химии, e-mail: yumar@org.chem.msu.su)

Изучено поведение 6-метил-2-фенил-, 1,6-диметил-2-фенил-5-аминоиндолов в реакции с ацетоуксусным и трифторацетоуксусным эфирами. Разработаны целенаправленные способы синтеза функционально замещенных пирроло[3,2f]хинолонов.

Ранее [1] мы сообщали, что термическая конденсация 2-фенил- и 1-метил-2-фенил-5-аминоиндолов с ацетоуксусным и трифторацетоуксусным эфирами, а также последующая циклизация промежуточных продуктов приводят к образованию соответствующих пирроло[2,3-g]- и пирроло[3,2-f]хинолонов. Продолжая исследование в этом направлении, мы изучили реакции аминоиндолов (1, 2) с ацетоуксусным и трифторацетоуксусным эфирами с целью разработки методов синтеза функционально замещенных пирролохинолонов с заведомо угловым сочленением колец.

При нагревании аминоиндолов 1, 2 с ацетоуксусным эфиром в абсолютном бензоле в присутствии каталитических количеств ледяной уксусной кислоты получены этил(E, Z)-3-(6-метил-2-фенил-1H-5-индолиламино)-2-бутеноат (**3**) и этил(E, Z)-3-(1,6-диметил-2-фенил-1H-5-индолиламино)-2-бутеноат (**4**) (схема 1).

На основании данных спектра ЯМР ¹Н (интегральной интенсивности сигналов характеристических протонов) соединения **3** в растворе ДМСО- d_6 соотношение *Z*- и *E*-форм составляет 4:1 (табл. 1). В спектре обоих изомеров аминокротоната **3** наблюдаются триплетный и квадруплетный сигналы протонов этоксикарбонильной группы, синглеты протонов групп β -CH₃, 6-CH₃, сигналы винильного и ароматических протонов, а также протонов двух групп N–H. Для *Z*-изомеров, в отличие от *E*-изоме-

^{*} Мордовский государственный педагогический институт, Capaнск, e-mail: mgpi@si.moris.ru.

Таблица 1

Соединение	Брутто-формула	Найдено % (Вычислено %)		R _f (система)	<i>Т</i> _{пл} , °С	
		С	Н	М		
3	$C_{21}H_{22}N_2O_2$	75,36 (75,42)	6,71 (6,63)	334 (334)	0,41; 0,72 (A)	164–165 из петролейного эфира
4	$C_{22}H_{24}N_2O_2$	75,78 (75,84)	7,01 (6,94)	348 (348)	0,42; 0,82 (A)	124–125 из петролейного эфира
5	$C_{21}H_{19}F_3N_2O_2$	64,79 (64,94)	5,14 (4,93)	388 (388)	0,71 (Б)	174–175 из гексана
6	$C_{22}H_{21}F_3N_2O_2$	65,64 (65,66)	5,27 (5,26)	402 (402)	0,77 (B)	140–141 из гексана
9	C ₁₉ H ₁₆ N ₂ O	79,15 (79,14)	5,62 (5,59)	288 (288)	0,2; 0,53 (Γ)	>276 из спирта
10	C ₂₀ H ₁₈ N ₂ O	79,37 (79,44)	6,09 (6,00)	302 (302)	0,6 (Г)	>276 из толуола
11	C ₁₉ H ₁₃ F ₃ N ₂ O	66,62 (66,67)	3,87 (3,83)	342 (342)	0,58 (Б)	247–248 из толуола
12	$C_{20}H_{15}F_3N_2O$	67,32 (67,41)	4,36 (4,24)	356 (356)	0,69 (Б)	206–207 из толуола

Физико-химические характеристики полученных соединений

*Примечание. R*_f система (А) – бензол – этилацетат (5:1), (Б) – бензол–этилацетат (10:1), (В) – бензол, (Г) – этилацетат–метанол –аммиак (4:1:следы).

ров, протоны этоксильной группы (триплет и квадруплет) проявляются на 0.2 м.д. в более слабых полях. Аналогично претерпевают слабопольный сдвиг сигналы винильного протона (0.45 м.д.) и протонов группы 6-CH₃ (0.04 м.д.). Этоксикарбонильная группа в *E*-форме сдвигает в более слабые поля (на 0.5 м.д.) сигнал протонов β-метильной группы.

Аналогичная картина наблюдается и для индолиламинокротоната 4: наличие Z- и E-изомеров в соотношении 5,3:1 (по интегральной интенсивности сигналов характеристических протонов в спектре ЯМР ¹Н). Полученные данные согласуются с результатами проведенных ранее исследований кротонатов, образованных другими аминоиндолами [2].

В масс-спектре енаминов **3**, **4** (табл. 2) наличие интенсивного пика иона [M-46]⁺, обусловленного

потерей молекулярными ионами C_2H_5OH , свидетельствует о превращении их в пирролохинолиновые структуры (скорее всего под действием температуры). Дальнейшая фрагментация иона $[M-46]^+$ подобна картине распада пирролохинолонов, что служит подтверждением наших предположений. Приведенные данные по индолил-5-аминокротонатам (включая и УФ-спектры) согласуются с полученными нами ранее результатами для других енаминокарбонильных соединений индольного ряда и дополняют их [1–3].

При нагревании аминоиндолов 1, 2 с трифторацетоуксусным эфиром в аналогичных условиях образуется трудноразделимая смесь енаминокротонатов 5, 6 и амидов 7, 8 с преобладанием последних. Преимущественное образование продуктов взаимодействия фторированного ацетоуксусного эфира по этоксикарбонильной группе несомненно связано с акцепторным влиянием трифторметильной группы, усиливающей реакционную способность сложноэфирной группировки. Подтверждением образования амидов 7, 8 является отсутствие в их спектрах ЯМР ¹Н сигналов протонов этоксильной группы. Количество протонов в молекулах полученных амидов соответствует суммарной интегральной интенсивности сигналов в спектрах. Четкое отнесение имеющихся сигналов затруднено существованием в растворе ДМСО-d₆ амидов в нескольких формах. Это подтверждается и хроматографическим контролем. В связи с этим амиды, как индивидуальные соединения не охарактеризованы, хотя их молекулярные массы, измеренные масс-спектрально, соответствуют расчетным.

Взаимодействие аминоиндолов 1, 2 с трифторацетоуксусным эфиром в условиях кинетического контроля (в абсолютном бензоле со следами ледяной уксусной кислоты в присутствии водоотнимающего средства – прокаленного сульфата кальция) при температуре 10–15°С и постоянном перемешивании приводит к образованию лишь этил(Z)-4,4,4-трифтор-3-(6-метил-2-фенил-1H-5-индолиламино)-2-бутеноата (**5**) и этил(Z)-4,4,4-трифтор-3-(1,6-диметил-2-фенил-1H-5индолиламино)-2-бутеноата (**6**). Альтернативных продуктов взаимодействия по сложноэфирной группе трифторацетоуксусного эфира в этих условиях не обнаружено. Это подтверждает факт образования амидов и енаминов в условиях термодинамического и кинетического контроля соответственно.

В спектре ЯМР ¹Н индолиламинокротоната **5** (табл. 2) имеются сигналы протонов этоксильной группы (1.26 и 4.17 м.д.), группы 6-CH₃ (2.31 м.д.), винильного протона (5.28 м.д.), протонов 2-фенильного заместителя, 4-H, 7-H, N-H амин. (11.45 м.д.) и N-H пирр. Таким образом, фторированный аминокротонат **5** в отличие от нефторированные енамина **3** в ДМСО-d₆ существует исключительно в *Z*-форме, что следует из сравнения химических сдвигов протонов группы CH₃CH₂O-, винильного и аминного фрагментов. В спектре индолиламинокротоната **6** наблюдаются аналогичные закономерности, что свидетельствует также об его *Z*-строении.

Как в масс-спектрах соединений **3**, **4**, так и в масс-спектрах соединений **5**, **6** помимо пика молекулярного иона имеется интенсивный пик иона [М-46]⁺ (табл. 2). Потеря молекулы этилового спирта, характерная для большинства индолиленаминокротонатов, также приводит к образованию молекулярных ионов соответствующих пирролохинолонов **11**, **12**.

УФ-спектры как фторированных, так и нефторированных индолиленаминокротонатов **3–6** содержат одинаковые полосы поглощения, что говорит о подобии их строения. Установлено, что термолиз при 280°С полученных индолиленаминокротонатов **3–6** приводит к пирролохинолонам **9–12** заведомо углового строения.

В спектре ЯМР ¹Н соединения **9** (табл. 2) имеются: сигналы метильных групп, синглеты протонов 1-Н, 5-Н, 9-Н, N-Н, а также сигналы фенильных протонов. Угловое сочленение колец подтверждает слабопольный сдвиг сигнала протона 1-Н (7.92 м.д.), находящегося в *пери*-положении к γ -пиридоновому кислороду, что характерно для подобного типа структур [1]. Пирролохинолон **9** устойчив к электронному удару. Поэтому в его массспектре самым интенсивным является пик молекулярного иона с *m/z* 288. Образование иона [M-28]⁺, т.е. потеря СО, говорит в пользу γ -хинолоновой структуры исследуемого соединения.

Аналогично при циклизации соединения 4 образуется пирролохинолон 10 с угловым сочленением колец. В спектре ЯМР ¹Н соединения 10 наблюдаются те же закономерности, что и для соединения 9. Различия состоят лишь в отсутствии сигнала протона $N_{(3)}$ -Н и в наличии синглета протонов группы 3-СН₃. Масс-спектр пирролохинолона 10 характеризуется наличием пика молекулярного иона с m/z 302, сигнала иона с малой интенсивностью (3%) [M-28]⁺ с m/z 274. Ультрафиолетовые спектры соединений 9, 10 практически идентичны, что подтверждает их одинаковую структуру.

Аналогично кротонатам 3, 4 их фторированные аналоги 5, 6 при кипячении в дифениле также превращаются в соответствующие трифторметилзамещенные ангулярные пирролохинолоны 11, 12. В спектральных характеристиках последних наблюдаются те же закономерности, которые отмечены для соединений 9, 10. Ранее нами было установлено, что индолил-5-амиды трифторацетоуксусной кислоты в условиях кислотного катализа даже при незамещенном β -положении пиррольного кольца циклизуются с участием атома C-6, а не C-4, что приво-

Таблица 2

Спектральные параметры соединений 3 – 6, 9 – 12

Соединение	Спектр ЯМР ¹ Н, δ, м.д., <i>J</i> (Гц)	Масс-спектр, <i>m/z</i> (<i>I</i> отн., %)	УФ спектр	
			λ _{макс}	lg ε
1	2	3	4	5
3	 (<i>E</i>) 1.05 (3H, т, <i>J</i>=7 Гц, O-CH₂-<u>CH₃</u>), 2.23 (3H, с, 6-CH₃), 2.28 (3H, с, β-CH₃), 3.85 (2H, к, <i>J</i>=7 Гц, O-<u>CH₂</u>-CH₃), 4.18 (1H, с, Hвин.), 6.83 (1H, с, 3-H), 7.24 (1H, с, 4-H), 7.31 (1H, т, <i>J</i>=8 Гц, <i>p</i>-Ph-H), 7.33 (1H, с, 7-H), 7.45 (2H, т, <i>J</i>=8 Гц, <i>m</i>-Ph-H), 7.83 (2H, д, <i>J</i>=8 Гц, o-Ph-H), 8.11 (1H, с, N-H), 11.40 (1H, с, 1-H). (<i>Z</i>) 1.21 (3H, т, <i>J</i>=7 Гц, O-CH₂-<u>CH₃</u>), 1.78 (3H, с, β-CH₃), 2.37 (3H, с, 6-CH₃), 4.06 (2H, к, <i>J</i>=7 Гц, O-<u>CH₂-CH₃</u>), 4.63 (1H, с, Hвин.), 6.83 (1H, с, 3-H), 7.29 (1H, с, 4-H), 7.31 (1H, т, <i>J</i>=8 Гц, п-Ph-H), 7.33 (1H, с, 7-H), 7.45 (2H, т, <i>J</i>=8 Гц, <i>m</i>-Ph-H), 7.83 (2H, д, <i>J</i>=8 Гц, <i>o</i>-Ph-H), 10.02 (1H, с, N-H), 11.40 (1H, с, 1-H). 	334 (68); 289 (26); 288 (60); 287 (27); 273 (9); 262 (13); 261 (63); 260 (100); 259 (84); 247 (93); 245 (57); 244 (22); 232 (19); 217 (12); 206 (33); 204 (18); 178 (10); 167 (11); 165 (13); 130 (21); 123 (33); 122 (34); 115 (16); 102 (16); 89 (15); 77 (52); 51 (11); 45 (12); 42 (18); 39 (32).	211 233 328	4.52 4.42 4.63
4	(<i>E</i>) 1.04 (3H, τ, <i>J</i> =7 Γu, O-CH ₂ - <u>CH₃</u>), 2.29 (3H, c, 6-CH ₃), 2.33 (3H, c, β-CH ₃), 3.72 (3H, c, 1-CH ₃), 3.87 (2H, κ, <i>J</i> =7 Γu, O- <u>CH₂-</u> CH ₃), 4.14 (1H, c, HBUH.), 6.51 (1H, c, 3-H), 7.26 (1H, c, 4-H), 7.42 (1H, c, 7-H), 7.45 (1H, τ, <i>p</i> -Ph-H), 7.52 (2H, τ, <i>J</i> =8 Γu, <i>m</i> -Ph-H), 7.58 (2H, д, <i>J</i> =8 Γu, <i>o</i> -Ph-H), 8.15 (1H, c, N-H). (<i>Z</i>) 1.21 (3H, τ, <i>J</i> =7 Γu, O-CH ₂ - <u>CH₃</u>), 1.78 (3H, c, β-CH ₃), 2.32 (3H, c, 6-CH ₃), 3.72 (3H, c, N-CH ₃), 4.07 (2H, κ, <i>J</i> =7 Γu, O- <u>CH₂-</u> CH ₃), 4.64 (1H, c, HBUH.), 6.51 (1H, c, 3-H), 7.36 (1H, c, 4-H), 7.42 (1H, c, 7-H), 7.44 (1H, τ, <i>J</i> =8 Γu, <i>p</i> -Ph-H), 7.52 (2H, τ, <i>J</i> =8 Γu, <i>m</i> -Ph-H), 7.58 (2H, д, <i>J</i> =8 Γu, <i>o</i> -Ph-H), 10.06 (1H, c, N-H).	348 (100); 302 (50); 274 (25); 261 (23).	211 227 303	4.19 4.18 4.23
5	1.26 (3H, т, <i>J</i> =7 Гц, О-СН ₂ - <u>СН</u> ₃), 2.31 (3H, с, 6-СН ₃), 4.17 (2H, к, <i>J</i> =7 Гц, О- <u>СН</u> ₂ -СН ₃), 5.28 (1H, с, Нвин.), 6.87 (1H, с, 3-H), 7.27 (1H, с, 4-H), 7.32 (1H, т, <i>J</i> =8 Гц, <i>p</i> -Ph-H), 7.36 (1H, с, 7-H), 7.46 (2H, т, <i>J</i> =8 Гц, <i>m</i> -Ph-H), 7.83 (2H, д, <i>J</i> =8 Гц, <i>o</i> -Ph-H), 9.56 (1H, с, N-H), 11.45 (1H, с, 1-H). * 1.34 (3H, т, <i>J</i> =7 Гц, О-СН ₂ - <u>СН</u> ₃), 2.36 (3H, с, 6-СН ₃), 4.23 (2H, к, <i>J</i> =7 Гц, О- <u>СН</u> ₂ -СН ₃), 5.32 (1H, с, Нвин.), 6.75 (1H, с, 3- H), 7.23 (1H, с, 4-H), 7.33 (1H, т, <i>J</i> =8 Гц, <i>p</i> -Ph-H), 7.44 (2H, т, <i>J</i> =8 Гц, <i>m</i> -Ph-H), 7.46 (1H, с, 7-H), 7.64 (2H, д, <i>J</i> =8 Гц, <i>o</i> -Ph-H), 8.27 (1H, с, N-H), 9.62 (1H, с, 1-H).	388 (93); 343 (28); 342 (100); 341 (29); 319 (12); 315 (41); 314 (46); 313 (29); 300 (25); 295 (18); 293 (17); 273 (17); 246 (33); 245 (78); 244 (18); 232 (17); 218 (9); 206 (45); 204 (22); 190 (12); 178 (13); 165 (13); 152 (10); 140 (11); 136 (24); 128 (14); 123 (32); 122 (18); 115 (17); 109 (18); 102 (22); 89 (18); 77 (70); 69 (21); 51 (24); 45 (16); 39 (22).	211 233 323	4.56 4.45 4.65
6	1.25 (3H, т, <i>J</i> =7 Гц, О-СН ₂ - <u>СН₃</u>), 2.35 (3H, с, 6-СН ₃), 3.73 (3H, с, 1-СН ₃), 4.19 (2H, к, <i>J</i> =7 Гц, О- <u>СН₂</u> -СН ₃), 5.28 (1H, с, Нвин.), 6.54 (1H, с, 3-H), 7.40 (2H, с, 4-, 7-H), 7.44 (1H, т, <i>J</i> =8 Гц, <i>p</i> -Ph-H), 7.52 (2H, т, <i>J</i> =8 Гц, <i>m</i> -Ph-H), 7.58 (2H, д, <i>J</i> =8 Гц, <i>o</i> -Ph-H), 9.59 (1H, с, N-H).	402 (100); 357 (31); 356 (86); 355 (23); 333 (17); 329 (26); 328 (28); 327 (19); 315 (9); 259 (11); 220 (6); 204 (8).	211 227 303	4.28 4.27 4.29

Продолжение табл. 2

9	2.45 (3H, c, 5-CH ₃), 2.62 (3H, c, 7-CH ₃), 6.00 (8H, c, 1-H), 7.29 (1H, т, <i>J</i> =8 Гц, <i>p</i> -Ph-H), 7.46 (2H, т, <i>J</i> =8 Гц, <i>m</i> -Ph-H), 7.54 (1H, c, 4-H), 7.84 (2H, д, <i>J</i> =8 Гц, <i>o</i> -Ph-H), 7.92 (1H, c, 1-H), 10.10 (1H, c, 6-H), 11.64 (1H, c, 3-H).	288 (100); 287 (41); 260 (15); 259 (23); 144 (13); 130 (18); 129 (12); 77 (19); 45 (23); 44 (22); 39 (12).	208 230 244 пл 256 пл 308 370	4.56 4.56 4.40 4.35 4.32 4.42
10	2.44 (3H, c, 5-CH ₃), 2.66 (3H, c, 7-CH ₃), 3.83 (3H, c, 3-CH ₃), 6.00 (1H, c, 8-H), 7.43 (1H, т, <i>J</i> =8 Гц, <i>p</i> -Ph-H), 7.52 (2H, т, <i>J</i> =8 Гц, <i>m</i> -Ph-H), 7.60 (1H, c, 4-H), 7.63 (2H, д, <i>J</i> =8 Гц, <i>o</i> -Ph-H), 7.72 (1H, c, 1-H), 10.15 (1H, c, 6-H).	302 (23); 274 (3); 92 (56); 91 (100); 77 (7); 65 (17); 51 (12); 39 (31).	211 227 256 299 364	4.37 4.30 4.13 4.01 4.06
11	2.73 (3H, c, 5-CH ₃), 7.29 (1H, c, 8-H), 7.32 (1H, т, <i>J</i> =8 Гц, <i>p</i> -Ph- H), 7.48 (2H, т, <i>J</i> =8 Гц, <i>m</i> -Ph-H), 7.68 (1H, c, 4-H), 7.80 (1H, c, 1-H), 7.90 (2H, д, <i>J</i> =8 Гц, <i>o</i> -Ph-H), 11.88 (1H, c, 6-H), 12.02 (1H, c, 3-H).	342 (100); 341 (35); 293 (8); 171 (9); 161 (16); 109 (9); 77 (5).	208 230 274 282 294 пл 351	 4.59 4.57 4.52 4.51 4.47 4.37
12	2.78 (3H, c, 5-CH ₃), 4.92 (3H, c, 3-CH ₃), 7.30 (1H, c, 8-H), 7.40 (1H, c, 4-H), 7.46 (1H, т, <i>J</i> =8 Гц, <i>p</i> -Ph-H), 7.54 (2H, т, <i>J</i> =8 Гц, <i>m</i> -Ph-H), 7.65 (2H, д, <i>J</i> =8 Гц, <i>o</i> -Ph-H), 8.00 (1H, c, 1-H), 11.87 (1H, c, 6-H).	356 (100); 355 (8); 178 (5); 168 (9); 77 (7).	208 230 274 345	4.56 4.53 4.57 4.32

* B CDCl₃.

дит к линейно построенным пирролохинолонам [1], в отличие от таких же нефторированных амидов, превращающихся в аналогичных условиях в смесь пирролохинолонов как линейного, так и углового строения [4], что, по-видимому, объясняется большими стерическими требованиями трифторметильной группы по сравнению с метильной.

Это предположение подтверждает тот факт, что амиды 7, 8 как в кислотных условиях, так и в термических не превращаются в соответствующие пирролохинолоны. В реакционной смеси обнаружены лишь исходные соединения и продукты их распада.

Таким образом, мы показали, что реакции 6-метил-2-фенил-, 1,6-диметил-2-фенил-5-аминоиндолов с ацетоуксусным и трифторацетоуксусным эфирами в зависимости от условий проведения протекают с образованием соответствующих енаминов или амидов. Было изучено поведение последних в термических и кислотных условиях, а также разработаны методы синтеза некоторых функционально замещенных пирроло[3,2-f]хинолонов.

Экспериментальная часть

Спектры ПМР записаны на приборе "*Bruker DRX* 500" в ДМСО-d₆, а соединения **5** еще и в CDCl₃,

внутренний стандарт – ТМС. Масс-спектры получены на масс-спектрометре "FINNIGAN MAT. INCOS-50" с прямым вводом образца в ионный источник при энергии ионизации 70 эВ. Электронные спектры сняты на спектрофотометре Specord в этаноле. Очистку продуктов реакции проводили методом колоночной хроматографии на Al_2O_3 (нейтральная, I и II степени активности по Брокману). Контроль за ходом реакции и чистотой полученных соединений, определение R_f осуществляли с помощью TCX на пластинках Silufol UV-254.

Общая методика получения енаминов из аминоиндолов и ацетоуксусного эфира (A)

Смесь аминоиндола, ацетоуксусного эфира и каталитических количеств уксусной кислоты кипятят в абсолютном бензоле в течение нескольких часов (контроль хроматографический). По окончании реакции бензол отгоняют. Выделенное вещество очищали пропусканием нагретого до кипения раствора в петролейном эфире с небольшим количеством бензола через слой (1 см) окиси алюминия, а затем перекристаллизовывали из петролейного эфира.

Общая методика получения енаминов из аминоиндолов и трифторацетоуксусного эфира (Б)

Смесь аминоиндола и этилового эфира 4,4,4трифторацетоуксусной кислоты в абсолютном бензоле с каталитическими количествами уксусной кислоты в присутствии прокаленного сульфата кальция перемешивают в течение 4 мес (контроль хроматографический) при температуре 10–15°С. По окончании реакции раствор отфильтровывают от сульфата кальция, бензол упаривают. Выделенное вещество очищают пропусканием нагретого до кипения раствора вещества в гексане через слой (1 см) окиси алюминия, а затем перекристаллизовывают из гексана.

Общая методика получения пирроло[3,2-f]хинолонов (В)

Енамин нагревают в кипящем дифениле в течение 15–20 мин. По окончании реакции еще теплую реакционную массу выливают в петролейный эфир. Выпавший осадок отфильтровывают и многократно промывают горячим петролейным эфиром от дифенила, перекристаллизовывают из спирта (соединение 9) и толуола (соединения 10–12).

Этиловый эфир (E,Z)-3-(6-метил-2-фенил-1H-5индолиламино)бут-2-еновой кислоты (3) получают по методике (А) из 0,7 г (3,15 ммоль) аминоиндола 1 и 0,56 г (4,31 ммоль) ацетоуксусного эфира. Выход 0,818 г (78%).

Этиловый эфир (E,Z)-3-(1,6-диметил-2-фенил-1H-5-индолиламино)бут-2-еновой кислоты (4) получают аналогично из 0,6 г (2,54 ммоль) аминоиндола 2 и 0,48 г (3,69 ммоль) ацетоуксусного эфира. Выход 0,624 г (70%). Этиловый эфир (Z)-4,4,4-трифтор-3-(6-метил-2фенил-1Н-5-индолиламино)бут-2-еновой кислоты (5) получают по методике (Б) из 0,501 г (2,26 ммоль) аминоиндола 1 и 0,565 г (3,07 ммоль) трифторацетоуксусного эфира. Выход 0,55 г (63 %).

Этиловый эфир (Z)-3-(1,6-диметил-2-фенил-1H-5индолиламино)-4,4,4-трифторбут-2-еновой кислоты (6) получают аналогично из 0,505 г (2,14 ммоль) аминоиндола 2 и 0,54 г (2,93 ммоль) трифторацетоуксусного эфира. Выход 0,573 г (67%).

5,7-Диметил-2-фенил-6,9-дигидро-3H-пирроло[3,2f]хинолин-9-он (9) получают по методике (В) из 0,246 г (0,74 ммоль) аминокротоната (3). Выход 0,178 г (84%).

3,5,7-Триметил-2-фенил-6,9-дигидро-3H-пирроло[3,2-f]хинолин-9-он (10) получают аналогично из 0,305 г (0,88 ммоль) аминокротоната (4). Выход 0,25 г (94%).

5-Метил-2-фенил-7-трифторметил-6,9-дигидро-3H-пирроло[3,2-f]хинолин-9-он (11) получают аналогично из 0,105 г (0,27 ммоль) енамина (5). Выход 0,073 г (79%).

3,5-Диметил-2-фенил-7-трифторметил-6,9-дигидро-3H-пирроло[3,2-f]хинолин-9-он (12) получают аналогично из 0,05 г (0,12 ммоль) енамина (6). Выход 0,03 г (68%).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ямашкин С.А., Романова Г.А., Юровская М.А. // ХГС (в печати)
- 2. Ямашкин С.А., Юровская М.А. // ХГС. 1999. № 10. С. 1336.
- Ямашкин С.А., Терентьев П.Б. 1-ая Всероссийская конференция по химии гетероциклов памяти А.Н. Коста. Суздаль, 2000. С. 431.
- 4. Ямашкин С.А., Юдин Л.Г., Кост А.Н. // ХГС. 1983. № 4. С. 493.

Поступила в редакцию 17.10.03

SYNTHESES OF FUNCTIONAL SUBSTITUTED PYRROLO[3,2*f*]QUINOLONES FROM 6-METHYL-2-PHENYL- AND 1,6-DIMETHYL-2-PHENYL-5-AMINOINDOLES

S. A. Yamashkin, G. A. Romanova, M. A. Yurovskaya

(Division of Organic Chemistry)

Studied reactions of 6-methyl-2-phenyl- and 1,6-dimethyl-2-phenyl-5-aminoindoles with ethyl acetoacetate and ethyl 4,4,4-trifluoroacetoacetate with initial formation corresponding to aminocrotonates and enamines. Designed methods of the syntheses some function substituted by pyrrolo[3,2-f]quinolones.