MIT OpenCourseWare
http://ocw.mit.edu

5.60 Thermodynamics \& Kinetics

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Complex Reactions and Mechanisms (continued)

III) Reversible Reactions

$$
A \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} B \quad K_{e q}=\frac{[B]_{e q}}{[A]_{e q}}
$$

If $1^{\text {st }}$ order, $\quad R_{\text {forward }}=R_{f}=k_{1}[A]$

$$
R_{\text {backward }}=R_{b}=k_{-1}[B]
$$

At Equilibrium, $\quad R_{f}=R_{b} \quad \Rightarrow \quad k_{1}[A]_{e q}=k_{-1}[B]_{e q}$

$$
\mathrm{K}_{\text {eq }}=\frac{\mathrm{k}_{1}}{\mathrm{k}_{-1}}
$$

a) $1^{\text {st }}$ order reversible reactions

$$
\begin{array}{r}
A \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} B \quad-\frac{d[A]}{d t}=k_{1}[A]-k_{-1}[B] \\
{[B]=[B]_{0}+\left([A]_{0}-[A]\right)} \\
\text { So... }-\frac{d[A]}{d t}=k_{1}[A]-k_{-1}\left([B]_{0}+[A]_{0}-[A]\right)
\end{array}
$$

At Equilibrium, $\frac{d[A]}{d t}=0$

$$
\Rightarrow \quad[A]_{e q}=\frac{k_{-1}}{k_{1}+k_{-1}}\left([B]_{0}+[A]_{0}\right)
$$

$$
\begin{aligned}
& -\frac{d\left([A]-[A]_{e q}\right)}{d t}=-\frac{d([A])}{d t}=\left(k_{1}+k_{-1}\right)\left([A]-[A]_{e q}\right) \\
& \quad \Rightarrow \quad[A]-[A]_{e q}=\left([A]_{0}-[A]_{e q}\right) e^{-\left(k_{1}+k_{-}\right) t}
\end{aligned}
$$

Can measure: $\quad \mathrm{K}_{\text {eq }}=\frac{\mathrm{k}_{1}}{\mathrm{k}_{-1}} \quad$ and $\quad \mathrm{k}_{1}+\mathrm{k}_{-1} \equiv \mathrm{k}_{\mathrm{obs}}$

And extract k_{1} and k_{-1}

b) Higher order reactions

e.g. $\quad A+B \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{2}}{\rightleftarrows}} C$
$2^{\text {nd }}$ order forward, $1^{\text {st }}$ order backward
$-\frac{d[A]}{d t}=k_{2}[A][B]-k_{-1}[C], \quad K=\frac{[C]_{e q}}{[A]_{e q}[B]_{\text {eq }}} \quad, \quad K=\frac{k_{2}}{k_{-1}}$

After much calculation, get... A mess!

We must begin simplifying from the beginning!

Use Flooding in this case: $[B]_{0} \gg[A]_{0},[C]_{0}$

Then $\quad k_{1} \equiv k_{2}[B]_{0} \approx k_{2}[B]$

$$
-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{d} t}=\mathrm{k}_{1}[\mathrm{~A}]-\mathrm{k}_{-1}[\mathrm{C}]
$$

This is now pseudo $1^{\text {st }}$ order in A
\Rightarrow Looks the same as in part a)
Measure: $K=\frac{k_{2}}{k_{-1}} \quad, \quad k_{\text {obs }} \equiv k_{1}+k_{-1}=k_{2}[B]_{0}+k_{-1}$
By changing $[B]_{0}$ over a few experiments, can extract k_{2} and k_{-1}

IV) Series Reversible Reactions (1 ${ }^{\text {st }}$ order)

$$
A \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftarrows}} B \xrightarrow{\mathrm{k}_{2}} C
$$

$$
\begin{gathered}
-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{k}_{1}[\mathrm{~A}]-\mathrm{k}_{-1}[\mathrm{~B}] \quad \frac{d[B]}{d t}=k_{1}[A]-k_{-1}[B]-k_{2}[B] \\
-\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{d} t}=\mathrm{k}_{2}[\mathrm{~B}]
\end{gathered}
$$

Can solve this, but it is an even bigger mess than in part IIIb)!!

And here Flooding, as an approximation, is not going to do much for us.

We need to find new approximations for more complicated mechanisms!

IV) Steady State and Equilibrium Approximations

a) Steady State Approximation

$$
A \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftarrows}} B \xrightarrow{\mathrm{k}_{2}} C
$$

Assume that $[B]$ is small and slowly varying
e.g. $\frac{d[B]}{d t} \approx 0$ and $\left(k_{2}+k_{-1}\right) \gg k_{1}$
$[B]$ reaches a steady state concentration $[B]_{s s}$ and remains there

$$
\frac{d[B]}{d t}=k_{1}[A]-k_{-1}[B]_{\text {Ss }}-k_{2}[B]_{\text {ss }} \widetilde{\widetilde{4}}^{0}
$$

Steady State approximation
Solving... $[B]_{S S}=\frac{k_{1}[A]}{k_{-1}+k_{2}}$

So $\quad-\frac{d[A]}{d t}=k_{1}[A]-k_{-1}[B]_{S S}$

$$
-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=\frac{\mathrm{k}_{1} \mathrm{k}_{2}[\mathrm{~A}]}{\mathrm{k}_{-1}+\mathrm{k}_{2}}
$$

$$
\frac{d[C]}{d t}=k_{2}[B]_{S S}=\frac{k_{1} k_{2}[A]}{k_{-1}+k_{2}}=-\frac{d[A]}{d t}
$$

Looks like

$$
A \xrightarrow{\mathrm{k}^{\prime}} C \quad \text { (first order) with } \mathrm{k}^{\prime}=\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{-1}+\mathrm{k}_{2}}
$$

Necessary Condition for use of Steady State Approximation
i) Data must be taken after B has built up to a steady state value.
ii) $\left(k_{2}+k_{-1}\right) \gg k_{1} \Rightarrow[B]_{s s}$ is small
b) Equilibrium Approximation

$$
A \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftarrows}} B \xrightarrow{\mathrm{k}_{2}} C
$$

Assume $\mathrm{k}_{2} \ll \mathrm{k}_{-1}$ and k_{1}

That is... $B \xrightarrow{\mathrm{k}_{2}} C \quad$ is the rate limiting step.
Then... A and B quickly come into equilibrium, while C slowly builds up.

$$
\mathrm{K}_{\text {eq }}=\frac{\mathrm{k}_{1}}{\mathrm{k}_{-1}} \approx \frac{[B]}{[A]} \quad[B]=\frac{\mathrm{k}_{1}}{\mathrm{k}_{-1}}[A]=\mathrm{K}_{\text {eq }}[A]
$$

Equilibrium approximation
So... $\frac{d[C]}{d t}=k_{2}[B]=k_{2} K_{e q}[A]=\frac{k_{1} k_{2}}{k_{-1}}[A]$

$$
\text { Or, } \frac{d[C]}{d t}=\frac{k_{1} k_{2}}{k_{-1}}[A]
$$

Looks like

$$
A \xrightarrow{k^{\prime}} C \quad \text { (first order) with } k^{\prime}=\frac{k_{1} k_{2}}{k_{-1}}
$$

In general, for a mechanism with multiple pre-equilibria...
egg.

$$
\frac{d[B]}{d t}=k_{n}\left[I_{n}\right]=k_{n}\left[\prod_{i=1}^{n} K_{i}\right][A]
$$

Examples:

A) Apparent Termolecular Reactions (Reaction Chaperones)

$$
I+I+M \xrightarrow{k} I_{2}+M
$$

M is a rare gas molecule or the wall of the reaction vessel
Mechanism:

$$
\begin{aligned}
& I+I \underset{k_{-1}}{\stackrel{k_{1}}{\longleftrightarrow}} I_{2}^{*} \\
& I_{2}^{*}+M \xrightarrow{k_{2}} I_{2}+M^{*} \\
& \left(M^{*} \longrightarrow M\right)
\end{aligned}
$$

where $\left(k_{2}+k_{-1}\right) \gg k_{1}$, that is the Steady State approximation!

So $\quad \frac{d\left[I_{2}^{*}\right]}{d t}=k_{1}[I]^{2}-k_{-1}\left[I_{2}^{*}\right]_{S S}-k_{2}\left[I_{2}^{*}\right]_{S S}[M] \approx 0$
Steady State approximation

Solving...

$$
\left[I_{2}^{*}\right]_{S S}=\frac{k_{1}[I]^{2}}{k_{-1}+k_{2}[M]}
$$

And ... $\frac{d\left[I_{2}\right]}{d t}=k_{2}\left[I_{2}^{*}\right]_{S s}[M]=k_{2}[M] \frac{k_{1}[I]^{2}}{k_{-1}+k_{2}[M]}$

Limiting Cases

i) $\begin{aligned} \quad \mathrm{k}_{2}[M] & >\mathrm{k}_{-1} \\ & (\text { high pressure })\end{aligned}$
then $\quad \frac{d\left[I_{2}\right]}{d t}=k_{1}[I]^{2}$
ii) $k_{2}[M] \ll k_{-1}$
then $\quad \frac{d\left[I_{2}\right]}{d t}=\frac{k_{1} k_{2}}{k_{-1}}[M][I]^{2}$
third order
second order
B) Gas decomposition (Lindemann Mechanism)

$$
A(g) \rightarrow \text { products }
$$

Mechanism:

$$
\begin{aligned}
& A+M \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftarrows}} A^{*}+M \\
& A^{*} \xrightarrow{\mathrm{k}_{2}} \text { products }(B+\ldots)
\end{aligned}
$$

M is a rare gas molecule and/or A,
$\xrightarrow{\mathrm{k}_{1}}$ is fast, $\quad \mathrm{k}_{-1}$ is very fast, $\xrightarrow{\mathrm{k}_{2}}$ is slow

So... ($k_{2}+k_{-1}$) > k_{1}, Steady State approximation again.

$$
\frac{d\left[A^{*}\right]}{d t}=k_{1}[A][M]-k_{-1}\left[A^{*}\right]_{S S}[M]-k_{2}\left[A^{*}\right]_{S S} \approx 0
$$

Steady State approximation

$$
\begin{aligned}
& {\left[A^{*}\right]_{S S}=\frac{k_{1}[A][M]}{k_{-1}[M]+k_{2}}} \\
& -\frac{d[A]}{d t}=\frac{d[B]}{d t}=k_{2}\left[A^{*}\right]_{S S}=\frac{k_{1} k_{2}[A][M]}{k_{-1}[M]+k_{2}}
\end{aligned}
$$

Limiting Cases

i) High pressure (1 bar) $\quad \mathrm{k}_{-1}[\mathrm{M}] \gg \mathrm{k}_{2}$

$$
-\frac{d[A]}{d t}=\frac{k_{1} k_{2}}{k_{-1}}[A]=k_{\infty}[A] \quad\left(1^{\text {st }} \text { order }\right)
$$

ii) Low pressure ($\sim 10^{-4}$ bar) $\mathrm{k}_{-1}[M] \ll \mathrm{k}_{2}$

$$
-\frac{d[A]}{d t}=k_{1}[A][M] \quad\left(\text { if } M \equiv A \text {, then } 2^{\text {nd }} \text { order in } A\right)
$$

