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Complex Reactions and Mechanisms (continued) 

III) Reversible Reactions

k1 [B]
A B K = 

eq 

k-1 
eq [ ]eqA 

If 1st order, 	 Rforward = Rf = k1[A] 
Rbackward = Rb = k-1[B] 

At Equilibrium, Rf	 = Rb ⇒ k1[A]eq = k-1[B]eq 

Keq = 
k1 

k−1 

a) 1st order reversible reactions 

k1 	 d[A]B 	 − = k1[A] − k−1[B]
dt 

[B] = [B]o + ([A]o – [A]) 

[ ]  [ ]  [ ]  So… − d[A] 
= k1[A] − k−1 (B o + A o − A )

dt 

A 
k-1 
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d[A]At Equilibrium, = 0
dt 

[ ]  = 
k−1 [ ] + [ ]A o )A eq (B o
k1 + k−1


⇒ 

d A ) ( )  (
([ ]  [ ]− A eq = −

d [ ]A 
= k1 + k−1 )([ ]  [ ]− A eq )− A

dt dt 

1[ ]  [ ]  eq = [A]o − [ ]eq )e −(k1 +k− )tA − A ( A⇒ 

ln (|[A] - [A]eq|)Conc 

[A]0 > [A]eq

Slope = -(k1+k-1)[A]eq 

[A]0 < [A]eq 

time time 

Can measure: Keq =
k1 and k1 + k−1 ≡ kobsk−1 

And extract k1  and  k-1 
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b) Higher order reactions 

k2 
e.g. A + B C 2nd order forward,

k-1 1st order backward 

d[A] [C]eq k
− 

dt 
= k2[A][B] − k−1[C] , K =

[ ]A eq [ ]eq 
, K =

− 

2

1B k 

After much calculation, get… A mess! 

We must begin simplifying from the beginning! 

Use Flooding in this case: [B]o >> [A]o,[C]o

 Then k1 ≡ k2[B]o ≈ k2[B] 

d[A]
− 

dt 
= k1[A] − k−1[C] 

This is now pseudo 1st order in A 

⇒ Looks the same as in part a) 

Measure: K =
k2 , kobs ≡ k1 + k-1 = k2[B]o + k-1k−1 

By changing [B]o over a few experiments, can extract k2 and k-1 



                    A B Ck-1 
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IV) Series Reversible Reactions (1st order) 

k1 k2 

d B− 
d[A] 

= k [A] − k [B] [ ]  
= k A − [ ]  − k B  [ ]  k B  [ ]

dt 1 −1 dt 1 −1 2 

− 
d[C] 

= k2[B]
dt 

Can solve this, but it is an even bigger mess than in part IIIb)!! 

And here Flooding, as an approximation, is not going to do much 
for us. 

We need to find new approximations for more complicated 
mechanisms! 



A B Ck-1 

k2 
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IV) Steady State and Equilibrium Approximations 

a) Steady State Approximation 

k1 

Assume that [B] is small and slowly varying

 e.g. d[B] 
≈ 0 and (k2 + k-1) >> k1dt 

[B] reaches a steady state concentration [B]SS and 
remains there 

d[B] 
= k1[A] − k−1[B]SS − k2[B]SS ≈ 0

dt


  Steady State approximation 


Solving… [B]SS = 
k1[A]


k−1 + k2


d[A]So − 
dt 

= k1[A] − k−1[B]SS 

d[A] k1k2[A]
− = 

dt k−1 + k2 

d[C] 
= k2[B]SS = 

k1k2[A] 
= − 

d[A] 
dt k−1 + k2 dt 
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k' k k
Looks like A C (first order)  with k'= 1 2 

k−1 + k2 

**Necessary Condition for use of Steady State Approximation** 
i) Data must be taken after B has built up to a steady 

state value. 
ii) (k2 + k-1) >> k1 ⇒ [B]SS is small 

A B  C
k-1 

k2 

b) Equilibrium Approximation 

k1 

Assume k2 << k-1 and k1 

k2That is… B  C is the rate limiting step. 

Then… A and B quickly come into equilibrium, while C slowly 
builds up. 

k1 [ ]B [ ]  k1 [ ]  eq AKeq = ≈
[ ]

B = 
k− 

A = K [ ]
A 1k−1 

Equilibrium approximation 

So… d[C] 
= k [B] = k K [A] = 

k1k2 [A]
dt 2 2 eq k−1 
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 Or, 

d[C ] 

= 
k 1 k 2 [A ]

dt k − 1 

Looks like A 
k' 

C (first order) with k'= 
k1k2 

k−1 

In general, for a mechanism with multiple pre-equilibria… 

e.g. 	 A ↔  I1 K1 

A ↔  I2 K2 

A ↔  I3 K3 

A ↔  I4 K4 

In ↔ B 	 (Rate Determining) 

nd[B]	 ⎡ ⎤ 
=kn [In ] = kn ⎢∏Ki ⎥[A]

dt ⎣ i=1 ⎦ 

Examples: 

A) Apparent Termolecular Reactions (Reaction Chaperones) 
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I + I + M k I2 + M 

M is a rare gas molecule or the wall of the reaction vessel 

Mechanism: 

k1
I + I I2

*
k-1 

I2
* + M k2 I2 + M*


 (M*
 M) 

where (k2 + k-1) >> k1 ,    that is the Steady State approximation! 

So 
d[I2

*] 
= k1[I]2 − k−1[I2

*]SS − k2[I2
*]SS[M] ≈ 0

dt 

    Steady State approximation 

k [I]2 

Solving… [I*] = 
k−1 + 

1 

k2[M]2 SS 

d[I2] 
= k2[I2

*]SS[M] = k2[M] 
k1[I]2 

dt k−1 + k2[M] 

Limiting Cases 

And … 
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 i) k2[M] >> k-1   then  
d[I2] 

=k [I]2 

dt 1 

(high pressure)    second order 

ii) k2[M] << k-1   then  
d[I2] 

=
k1k2 [M][I]2 

dt k−1 

 (low  pressure)    third  order  

B) Gas decomposition (Lindemann Mechanism)

  A(g)  →  products 

Mechanism: 

k1
A + M A* + M

k-1 

A* k2   products (B + …) 

M is a rare gas molecule and/or A, 

k1 is fast, is very fast, k2 is slow
k-1 

So… (k2 + k-1) >> k1 ,  Steady State approximation again. 

* *d[A*] 
= k [A][M] − k [A ]

dt 1 −1 SS 0]A[k]M[ SS2 ≈− 
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     Steady State approximation 

[A*] = 
k1[A][M] 

SS k−1[M] + k2 

− 
d[A] 

= 
d[B] 

= k2[A*]SS = 
k1k2[A][M] 

dt dt k−1[M] + k2 

Limiting Cases

 i) High pressure (1 bar) k-1[M] >> k2 

− 
d[A] 

= 
k1k2 [A] = k∞ [A] (1st order)

dt k−1 

ii) Low pressure (~10-4 bar) k-1[M] << k2 

d[A]
−

dt 
= k1[A][M]  (if M≡A, then 2nd order in A) 




