ИЛЛЮСТРАТИВНЫЕ МАТЕРИАЛЫ К СЕМИНАРАМ ПО НЕОРГАНИЧЕСКОЙ ХИМИИ Раздел 2 (второй семестр)

Составители: Е.Д. Демидова, В.Д. Долженко, К.О. Знаменков, О.А. Брылев, П.Е. Казин

<u>Семинары</u>	<u>стр.</u>
Элементы 1 группы	2
Элементы 2 группы, алюминий	5
Переходные элементы, элементы 4 и 5 групп	
(группы титана и ванадия)	8
Комплексные соединения	25
Элементы 6 группы (группа хрома)	32
Элементы 7 группы (группа марганца)	38
Железо, кобальт, никель	45
Элементы 11 группы (группа меди)	48
Элементы 12 группы (группа цинка)	51

Семинар «Элементы 1 группы»

	₃ Li	₁₁ Na	19 K	₃₇ Rb	₅₅ Cs
Электронная конфигурация	$[He]2s^1$	$[Ne]3s^1$	$[Ar]4s^1$	$[Kr]5s^1$	$[Xe]6s^1$
Металлический радиус, Å	1,52	1,86	2,27	2,48	2,65
Ионный радиус (КЧ 6), Å	0,76	1,02	1,38	1,52	1,67
Энергия ионизации I ₁ (кДж/моль)	520,2	495,8	418,8	403,0	375,7
Электроотрицательность по Полингу	0,98	0,93	0,82	0,82	0,79
по Оллреду-Рохову	0,97	1,01	0,91	0,89	0,86
Содержание в земной коре, масс. %	$1,8.10^{-3}$	2,27	1,84	$7,8.10^{-3}$	$2,6.10^{-4}$

Основные характеристики элементов 1 группы

Li	Na	Κ	Rb	Cs	
					>
увеличени	ие металличе	ского радиу	/ca		-

уменьшение энергии ионизации

уменьшение электроотрицательности

уменьшение температур плавления и кипения

Свойства простых веществ и ионов элементов 1 группы

					-
	Li	Na	K	Rb	Cs
Энергия атомизации (кДж/моль)	162	108	90	82	78
Τ _{пл} °C	180	98	64	40	28
Т _{кип} °С	1342	883	759	688	671
Стандартная энергия Гиббса гидратации М ⁺ (кДж/моль)	-477	-371	-300	-275	-253
Радиус гидратированного иона, Å	3,4	2,76	2,32	2,28	2,28
Стандартный электродный потенциал Е° (M ⁺ (aq)/M) (B, отн. H ⁺ /H)	-3,04	-2,71	-2,93	-2,98	-3,03

 $\mathbf{E}^{\circ}(\mathbf{Li}^{+}(\mathbf{aq})/\mathbf{Li}) < \mathbf{E}^{\circ}(\mathbf{Na}^{+}(\mathbf{aq})/\mathbf{Na})$

E° (Li⁺(расплав)/Li) > E° (Na⁺(расплав)/Na)

Малорастворимые соли щелочных металлов

Li: Li₂CO₃, Li₃PO₄, LiF **Na:** Na[Sb(OH)₆] **K:** KClO₄, KHC₄H₄O₆, K₂[PtCl₆]

Структура NaCl (галит)

элементарная ячейка кубическая, гранецентрированная, Z=4 число ионов натрия в ячейке $n(Na^+) = 8 \cdot 1/8 + 6 \cdot 1/2 = 4$ число ионов хлора в ячейке $n(Cl^-) = 12 \cdot 1/4 + 1 = 4$

Координационное окружение Na⁺

октаэдр (КЧ 6)

Координационное окружение СГ

октаэдр (КЧ 6)

Структура CsCl

элементарная ячейка кубическая, объемоцентрированная, Z=1 число ионов цезия в ячейке $n(Cs^+) = 1$ число ионов хлора в ячейке $n(Cl^-) = 8 \cdot 1/8 = 1$ координационное окружение $(Cs^+) -$ куб (КЧ=8) координационное окружение $(Cl^-) -$ куб (КЧ=8)

Семинар «Элементы 2 группы, алюминий»

	₄ Be	₁₂ Mg	₂₀ Ca	₃₈ Sr	₅₆ Ba
Электронная конфигурация	$[\text{He}]2\text{s}^2$	$[Ne]3s^2$	$[Ar]4s^2$	$[Kr]5s^2$	$[Xe]6s^2$
Металлический радиус, Å	1,12	1,60	1,97	2,15	2,22
Ионный радиус (КЧ 6), (Ве КЧ 4), Å	0,27	0,72	1,00	1,18	1,42
Энергия ионизации I ₁ (кДж/моль)	899,5	737,7	589,8	549,5	502,8
Энергия ионизации I ₂ (кДж/моль)	1757	1451	1145	1064	965
Электроотрицательность по Полингу	1,57	1,31	1,00	0,95	0,89
по Оллреду-Рохову	1,47	1,23	1,04	0,99	0,97
Содержание в земной коре, масс. %	$2 \cdot 10^{-4}$	2,76	4,66	0,0384	0,039

Основные характеристики элементов 2 группы

Be Mg Ca Sr Ba

увеличение атомного радиуса

уменьшение энергии ионизации

уменьшение электроотрицательности

Свойства п	ростых	веществ	и ионов	элементов 2	2 группь	I
						_

	Be	Mg	Ca	Sr	Ba
Энергия атомизации (кДж/моль)	324	146	178	164	178
T_{nn} °C	1289	650	842	769	729
Т _{кип} °С	2472	1090	1494	1382	1805
Стандартная энергия Гиббса гидратации М ²⁺ (кДж/моль)	-2410	-1836	-1517	-1390	-1256
Стандартный электродный потенциал	-1,97	-2,36	-2,84	-2,89	-2,92

$$MCO_3$$
 (TB.) = MO (TB.) + CO_2 (Γ)

Карбонат	Температура (°С),		
	при которой р(СО ₂) =1 атм.		
BeCO ₃	250		
MgCO ₃	540		
CaCO ₃	900		
SrCO ₃	1289		
BaCO ₃	1360		

$$\begin{split} &2BeSO_4+2Na_2CO_3+H_2O=Be(OH)_2\cdot BeCO_3\downarrow+2Na_2SO_4+CO_2\uparrow\\ &5MgSO_4+5Na_2CO_3+2H_2O=Mg(OH)_2\cdot 3MgCO_3\downarrow+Mg(HCO_3)_2+5Na_2SO_4\\ &Al_2(SO_4)_3+3Na_2CO_3+3H_2O=2Al(OH)_3\downarrow+3CO_2+3Na_2SO_4 \end{split}$$

Структура СаF₂ (флюорит)

(зеленым цветом обозначены ионы Ca^{2+} , красным – ионы F^{-}) элементарная ячейка кубическая, гранецентрированная , Z=4 $n(Ca^{2+}) = 8 \cdot 1/8 + 6 \cdot 1/2 = 4$ $n(F^{-}) = 8 \cdot 1 = 8$ Координационное окружение Ca^{2+} - куб (КЧ=8) Координационное окружение F^{-} - тетраэдр (КЧ=4)

<u>Семинар «Переходные элементы, элементы 4 и 5 групп (группы</u> <u>титана, ванадия)»</u>

Общая структура периодической системы

Расположение энергетических уровней многоэлектронных атомов в зависимости от номера элемента

рост окислительных свойств соединений в высших степенях окисления

Кластеры

Структуры 2-, 3- и 6-ядерных кластеров в соединениях переходных элементов

а

б

- а Re₂Cl₈²⁻ (тип M₂X₈);
- б Re₃Cl₉ (тип M₃X₉) и Re₃Cl₁₂³⁻ (тип M₃X₁₂);
- в $Mo_6Cl_8^{4+}$ (тип M_6X_8) и $Nb_6Cl_{12}^{2+}$ (тип M_6X_{12}).

Происхождение σ-, π-, и δ-связывания между двумя атомами d-элемента, расположенными вдоль оси z

Схематическое изображение диаграммы энергетических уровней МО для связи М-М в биядерном кластере

4 группа (группа титана)

ОСНОВНЫС	тарактеристи	ки элементов 4	-ой группы
	₂₂ Ti	₄₀ Zr	72 Hf
Электронная	$[Ar]3d^24s^2$	$[Kr]4d^25s^2$	$[Xe]4f^{14}5d^26s^2$
конфигурация			
Металлический	1,47	1,60	1,59
радиус, Å			
Условный	0,61	0,72	0,71
радиус Э ⁴⁺ , Å			
I ₁ , эВ	6,82	6,84	7,5
Содержание в	0,63	$1,6 \cdot 10^{-2}$	2,8 · 10-4
земной коре,			
масс. %			

Основные характеристики элементов 4-ой группы

Степени окисления, координационные числа и пространственная конфигурация соединений элементов группы титана

Степень	Электронная		Пространственная	Примеры
окисления	конфигурация	КЧ	конфигурация	соединений
+2	d^2	6	октаэдр	TiO, TiF ₂ , TiCl ₂
+3	d^1	6	октаэдр	$[\text{Ti}(\text{H}_2\text{O})_6]^{3+}, [\text{Ti}F_6]^{3-},$
				Ti_2O_3 , $TiCl_3$
+4	d^0	4	тетраэдр	TiCl ₄ , Ba ₂ TiO ₄ ,
				$\operatorname{ZrCl}_4(\Gamma), \operatorname{HfCl}_4(\Gamma)$
		6	октаэдр	$[TiF_6]^{2-}$, TiO ₂ ,
			-	CaTiO ₃ , FeTiO ₃
		7	пентагональная	$[ZrF_7]^{3-}$, $[HfF_7]^{3-}$,
			бипирамида	ZrO_2 , HfO_2
		8	квадратная	$[ZrF_8]^{4-}, [HfF_8]^{4-},$
			антипризма	ZrO ₂ , HfO ₂ ,
			-	$[Zr_4(OH)_8(H_2O)_{16}]^{8+}$

- py milli i millin					
	Ti	Zr	Hf		
Плотность (25°С), г/см ³	4,50	6,5	13,1		
T _{пл} , C	1668	1855	2230		
Т _{кип} , С	3285	4200	4450		
ΔН [°] _{возг.,} кДж/моль	471	608	703		

Физико-химические константы простых веществ
группы титана

Измене	ние кислотно-	основных свойс	тв элементов в групі	пе
		титана		
	усил	ение основных св	ойств	
усиление основных	TiO ₂ [·] nH ₂ O	ZrO ₂ ⁻ nH ₂ O	$HfO_2^{-} nH_2O$	
свойств	Ti(OH) ₃			

Диаграммы Латимера для титана

 $\begin{array}{c} pH=0\\ 0.10 & -0.37 & -1.63\\ TiO^{2+} ----> Ti^{3+} ----> Ti \end{array}$

 $\begin{array}{ccccccc} & & & pH{=}14 \\ & -1.38 & -1.95 & -2.13 \\ & & TiO_2 ----> Ti_2O_3 -----> TiO ----> Ti \end{array}$

Диаграмма Фроста (nE⁰- степень окисления n) для титана (pH = 0 и pH = 14)

Полимерные гидроксо- и оксопроизводные Ti(IV)

Цепи (TiO)_n²ⁿ⁺

Оптический спектр поглощения аквакомплекса [Ti(H₂O)₆]³⁺ (фиолетовый)

Энергетические уровни [Ti(H₂O)₆]³⁺ (стрелками показаны переходы в возбужденные состояния)

Физико-химические константы оксидов Ti(IV) и Zr(IV)

	TiO ₂	ZrO ₂
Т _{пл} , °С	1870	2850
ΔН ⁰ ₂₉₈ , кДж/моль	-994	-1100
ΔG° ₂₉₈ , кДж/моль	-889	-1043

Структура рутила TiO₂

(серым цветом обозначены атомы титана, красным – кислорода)

элементарная ячейка тетрагональная, Z=2 число ионов титана в ячейке $n(Ti^{4+})=8\cdot 1/8 + 1 = 2$ число ионов кислорода в ячейке $n(O^{2-})=4\cdot 1/2+2=4$ координационное окружение Ti^{4+} – октаэдр (КЧ=6) координационное окружение O^{2-} – равнобедренный треугольник (КЧ=3)

Перевод химически инертных оксидов в растворимые соединения

Сплавление:

$$t^{0}$$

$$TiO_{2} + 2NaOH \xrightarrow{t^{0}} Na_{2}TiO_{3} + H_{2}O$$

$$t^{0}$$

$$TiO_{2} + K_{2}CO_{3} \xrightarrow{t^{0}} K_{2}TiO_{3} + CO_{2}$$

$$t^{0}$$

$$TiO_{2} + 4NaHSO_{4} \xrightarrow{t^{0}} Ti(SO_{4})_{2} + 2Na_{2}SO_{4} + 2H_{2}O_{4}$$

$$t^{0}$$

$$TiO_{2} + 2K_{2}S_{2}O_{7} \xrightarrow{t^{0}} Ti(SO_{4})_{2} + 2K_{2}SO_{4}$$

$$t^{0}$$

$$TiO_{2} + 2Cl_{2} + 2C (CCl_{4}) \xrightarrow{t^{0}} TiCl_{4} + 2CO (CO_{2})$$

$$(T0 \ \text{we} - ZrO_{2})$$

5 группа (группа ванадия)

	₂₃ V	₄₁ Nb	₇₃ Ta
Электронная	$[Ar]3d^34s^2$	$[Kr]4d^45s^1$	$[Xe]4f^{14}5d^{3}6s^{2}$
Металлический радиус (КЧ 12), Å	1,34	1,46	1,46
Условный радиус Э ⁵⁺ , Å	0,54	0,64	0,64
I ₁ , эВ	6,74	6,88	7,89
Содержание в земной коре, масс. %	1,36 10-2	2. 10-3	$1,7^{-1}10^{-4}$

Основные характеристики элементов 5 группы

Физико-химические константы простых веществ группы ванадия

	V	Nb	Та
Плотность, Γ/cm^3	6,11	8,57	16,65
Т _{пл} ,°С	1915	2468	2980
Т _{кип} , °С	3350	4758	5534
$\Delta H^{\circ}{}_{BO3\Gamma},$	515	724	782
кДж/моль			

Степени окисления, координационные числа и пространственная конфигурация соединений элементов группы ванадия

Степень	Координационное	Пространственная	Примеры
окисления	число	конфигурация	
+2	6	октаэдр	$[V(H_2O)_6]^{2+}, VO$
+3	4	тетраэдр	$[VCl_4]^{-1}$
	6	октаэдр	$[V(H_2O)_6]^{3+}, [VF_6]^{3-}, V_2O_3$
+4	4	тетраэдр	VCl ₄
	6	октаэдр	$[VO(H_2O)_5]^{2+}, VO_2$

+5	4	тетраэдр	VO_4^{3-} , $VOCl_3$
	5	тригональная бипирамида	VF_5 , NbF_5 , TaF_5
	6	октаэдр	[VF ₆]⁻, NaNbO ₃ , NaTaO ₃
	7	пентагональная бипирамида	$[NbF_7]^{2^-}, [TaF_7]^{2^-}, [NbOF_6]^{3^-}$
	8	квадратная антипризма	$[TaF_8]^{3-}$

Кислотно-основные свойства и цвет гидроксидов ванадия

Гидроксид	Окраска	Кислотно-	Продукты
	гидроксида	основные	взаимодействия со
		свойства	щелочью и кислотой
HVO ₃		амфотерный с	ванадаты VO ₃ ⁻ (мета-)
(метаванадиевая	оранжево-	преобладанием	VO ₄ ³⁻ (орто-),
кислота)	красный	кислотных	соли ванадина $\mathrm{VO_2}^+$
		свойств	
VO(OH) ₂			ванадиты VO ₃ ²⁻ , V ₄ O ₉ ²⁻
(гидроксид	желтый	амфотерный	соли ванадила VO ²⁺
ванадила)			
V(OH) ₃			Не взаимодействует
(гидроксид	зеленый	основный	соли ванадия (III)
ванадия (III))			
V(OH) ₂			Не взаимодействует
(гидроксид	коричневый	основный	соли ванадия (II)
ванадия (II))			

Диаграммы Фроста для ванадия, ниобия, тантала (pH=0)

Диаграммы Латимера для ванадия, ниобия, тантала

pH=0

Соотношение различных форм ванадия (V) в водных растворах в зависимости от pH и концентрации ванадия

Строение [V₁₀O₂₈]⁶⁻

Строение комплексного иона $[Ta_6Cl_{12}]^{2+}$

(темным обозначены атомы тантала, светлым – атомы хлора)

Зависимость устойчивости галогенидов элементов 5 группы от степени окисления и природы галогенид-иона

Семинар «Комплексные соединения»

Форма d – орбиталей

Октаэдрическое поле лигандов

(серым цветом отмечены е_g – орбитали центрального атома)

Энергетическая диаграмма расщепления d – подуровня центрального атома в октаэдрическом

и тетраэдрическом полях лигандов

Октардрическое поле

Сферическое поле

Тетраэдрическое поле

Зависимость энергии стабилизации кристаллическим полем (ЭСКП) от электронной конфигурации центрального атома ЭСКП, Да

(1-сильное октаэдрическое поле (без учета энергии спаривания), 2- слабое октаэдрическое поле, 3- тетраэдрическое поле)

Геометрическое расположение лигандов при тетрагональном искажении октаэдрической симметрии

Энергетическая диаграмма расщепления d – орбиталей в тетрагонально искаженном октаэдрическом поле при удалении лигандов вдоль оси z (а) и приближении лигандов вдоль оси z (б).

 $\delta_1 >> \delta_2$

Энергетическая диаграмма перехода от чисто октаэдрического поля (а) к тетрагональному (б) и квадратному (в) при увеличивающемся удалении лигандов от центрального атома вдоль оси z.

Спектрохимический ряд лигандов (по увеличению энергии расщепления d-орбиталей в кристаллическом поле)

 $I' < Br' < S^{2-} < SCN' ~ CI' < NO_3' < F' < OH' < ONO' < HCOO' < C_2O_4^{-2-} < \sigma, \pi$ -доноры

Сопоставление теорий молекулярных орбиталей (ТМО), валентных связей (ТВС) и кристаллического поля (ТКП) применительно к октаэдрическому комплексу d – элемента

$$\begin{array}{c} \mathbf{F} \\ \mathbf{F} \\ \mathbf{TMO} \\ \mathbf{F} \\ \mathbf{TMO} \\ \mathbf{\sigma}_{\mathbf{x}}^{*} & \mathbf{\sigma}_{\mathbf{y}}^{*} & \mathbf{\sigma}_{\mathbf{z}}^{*} \\ \mathbf{\sigma}_{\mathbf{x}}^{*} & \mathbf{\sigma}_{\mathbf{y}z}^{*} & \mathbf{\sigma}_{\mathbf{z}z}^{*} \\ \mathbf{\sigma}_{\mathbf{x}}^{*} & \mathbf{\sigma}_{\mathbf{y}z}^{*} & \mathbf{\sigma}_{\mathbf{x}z}^{*} \\ \mathbf{\sigma}_{\mathbf{x}}^{*} & \mathbf{\sigma}_{\mathbf{y}}^{*} & \mathbf{\sigma}_{\mathbf{x}z}^{*} \\ \mathbf{\sigma}_{\mathbf{x}}^{*} & \mathbf{\sigma}_{\mathbf{y}}^{*} & \mathbf{\sigma}_{\mathbf{x}z}^{*} \\ \mathbf{TBC} \\ \mathbf{TBC} \\ \mathbf{\sigma}_{\mathbf{x}}^{*} & \mathbf{\sigma}_{\mathbf{y}}^{*} & \mathbf{\sigma}_{\mathbf{z}}^{*} \\ \mathbf{\sigma}_{\mathbf{x}}^{*} & \mathbf{\sigma}_{\mathbf{x}z}^{*} \\ \mathbf{\sigma}_{\mathbf{x}}^{*} & \mathbf{\sigma}_{\mathbf{x}z}^{*} \\ \mathbf{TBC} \\ \mathbf{\sigma}_{\mathbf{x}}^{*} & \mathbf{\sigma}_{\mathbf{y}}^{*} & \mathbf{\sigma}_{\mathbf{z}}^{*} \\ \mathbf{\sigma}_{\mathbf{x}}^{*} & \mathbf{\sigma}_{\mathbf{x}z}^{*} \\ \mathbf{\sigma}_{\mathbf{x}}^{*} & \mathbf{\sigma}_{\mathbf{x}}^{*} \\ \mathbf{\sigma}_{\mathbf{x$$

Схема распределения электронов по молекулярным орбиталям для октаэдрического высокоспинового комплекса $[CoF_6]^{3-}$ (а) и октаэдрического низкоспинового комплекса $[Co(NH_3)_6]^{3+}$ (б)

$$\Delta_0^1 < \Delta_0^2$$

($\Delta_0^1 = -2,1$ 3B, $\Delta_0^2 = -2,8$ 3B)

Влияние π – связывания на величину расщепления Δ

- a) d- или π*- орбитали лиганда 1 (лиганд 1 например, π- акцептор CO);
- б) орбитали комплекса I с о- и л- связями;
- в) орбитали комплекса с σ-связями (без учета π связывания);
- г) орбитали комплекса II с σ- и π- связями;
- д) р- или π- орбитали лиганда 2 (лиганд 2– например, σ- донор F⁻).

$$\Delta^1 > \Delta^2$$

<u>Семинар «Элементы 6 группы (группа хрома)»</u>

	₂₄ Cr	₄₂ Mo	₇₄ W
Электронная	$[Ar] 3d^54s^1$	$[Kr] 4d^55s^1$	$[Xe] 4f^{14}5d^46s^2$
конфигурация			
Металлический	1,28	1,39	1,39
радиус (КЧ 12), Å			
Ионный радиус			
(KЧ 6), Å		-	-
\Im^{2+}	0,73(HC)/0,80(BC)*	-	-
\Im^{3+}	0,615	0,69	-
\Im^{6+}	0,44	0,59	0,60
I ₁ , эВ	6,77	7,10	8,98
Содержание в			
земной коре,	$1,22 \cdot 10^{-2}$	$1,2^{-}10^{-4}$	$1,2^{-}10^{-4}$
масс. %			

Основные характеристики элементов 6 группы

*НС-низкоспиновый, ВС-высокоспиновый

Физико-химические константы простых веществ элементов группы хрома

	Cr	Мо	W
Плотность	7,14	10,28	19,3
(20°C), г/см ³			
T _{пл} ,°C	1900	2550	3422
Т _{кип} , °С	2690	4950	5500
$\Delta H^{\circ}{}_{BO3\Gamma},$	397	664	849
кДж/моль			

Диаграммы Фроста для хрома, молибдена и вольфрама при pH=0 (a) и pH=14 (б)

33

Ацетат хрома (II)

Кластер [Мо₆Cl₈]⁴⁺ (темным обозначены атомы молибдена, светлым – атомы хлора)

Кластер [W₂Cl₉]³⁻ (темным обозначены атомы вольфрама, светлым – атомы хлора)

Диаграмма Пурбе для хрома

(формы существования хрома в зависимости от электродного потенциала и кислотности раствора, пунктиром показаны потенциалы окисления и восстановления воды)

Диаграмма состояния Mo(VI) в водных растворах [Baes, C. F. and Mesmer, R. E., The Hydrolysis of Cations. Wiley, New York, 1976.]

Структура Кеггина $[PMo_{12}O_{40}]^{3-}$

Структура Андерсона [XM₆O₂₄]ⁿ⁻

Структура [Мо₇O₂₄]⁶⁻ (центральный октаэдр МоО₆ окружен 6 другими и имеет с ними общие ребра)

Гексамолибдат ион $[Mo_6O_{19}]^{2-}$

<u>Семинар «Элементы 7 группы (группа марганца)»</u>

	25 Mn	43 Tc	75 Re
Электронная	$[Ar]3d^54s^2$	$[Kr]4d^65s^1$	$[Xe]4f^{14}5d^{5}6s^{2}$
конфигурация			
Металлический	1,27	1,36	1,37
радиус (КЧ 12), Å			
Ионный радиус			
(KЧ 6), Å		-	-
\Im^{2+}	0,67	-	-
\Im^{3+}	0,58(HC)/0,645(BC)*	-	-
\mathfrak{Z}^{4+}	0,53	0,645	0,63
\mathfrak{Z}^{7+}	0,46	0,56	0,53
I ₁ , эВ	6,77	7,10	8,98
Содержание в			
земной коре,	0,106	-	$7^{\cdot} 10^{-8}$
масс. %			

Основные характеристики элементов 7 группы

*НС-низкоспиновый, ВС-высокоспиновый

Физико-химические константы

простых веществ элементов группы марганца

	Mn	Tc	Re
Плотность	7,43	11,5	21,0
(25°C), г/см ³			
T _{пл} ,°C	1244	2220	3180
Т _{кип} , °С	2060	4567	5650
$\Delta H^{\circ}{}_{BO3\Gamma},$	281	-	779
кДж/моль			

Химические свойства простых веществ

39

образование δ -связи за счет взаимодействия $d_{x^2-y^2}$ -орбиталей

Кластер [Re₃Cl₁₂]³⁻

(серым обозначены атомы рения, зеленым – атомы хлора)

Crpykrypa шпинели (Mn₃O₄)

Карбонилы марганца

Mn₂(CO)₁₀

<u>Семинар «Железо, кобальт, никель»</u>

	₂₆ Fe	₂₇ Co	₂₈ Ni
Электронная	$[Ar]3d^{6}4s^{2}$	$[Ar]3d^{7}4s^{2}$	$[Ar]3d^84s^2$
конфигурация			
Металлический	1,26	1,25	1,24
радиус (КЧ 12), Å			
Ионный радиус			
(KY 6), Å			-
\mathfrak{Z}^{2+}	0,61(HC)/0,78(BC)*	0,65(HC)/0,745(BC)	0,69
\mathfrak{Z}^{3+}	0,55(HC)/0,645(BC)	0,545(HC)/0,61(BC)	0,56(HC)/0,60(BC)
\mathfrak{Z}^{4+}	-	0,53	0,48
\mathfrak{Z}^{6+}	0,25 (КЧ 4)	-	-
I ₁ , эВ	6,77	7,10	8,98
Содержание в		_	_
земной коре,	4,1	$2^{\cdot} 10^{-3}$	8 ⁻ 10 ⁻³
масс. %			

Основные характеристики элементов

*НС-низкоспиновый, ВС-высокоспиновый

Физико-химические константы простых веществ элементов триады железа

	Fe	Со	Ni
Плотность	7,87	8,90	8,91
(20°C), г/см ³			
Т _{пл} ,°С	1535	1495	1455
Т _{кип} , оС	2750	3100	2920
Температура	769	1121	358
Кюри, °С			
$\Delta H^{\circ}{}_{BO3\Gamma},$	398	425	429
кДж/моль			

Изменение потенциала пары Э³⁺/Э²⁺ (В отн. СВЭ) в различных комплексных соединениях

	Fe	Со
$[\Im(H_2O)_6]^{3+}/[\Im(H_2O)_6]^{2+}$	0,77	1,92
$[\Im(bipy)_3]^{3+}/[\Im(bipy)_3]^{2+}$	0,96	0,31
$[\Im(\text{edta})]^{-}/[\Im(\text{edta})]^{2-}$	-0,12	0,37
$[\Im(CN)_6]^{3-}/[\Im(CN)_6]^{4-}$	0,36	-1,10*
$[\Im(C_2O_4)_3]^{3-}/[\Im(C_2O_4)_3]^{4-}$	0,02**	0,57

*потенциал пары $[Co(CN)_6]^3 / [Co(CN)_5(H_2O)]^3$ -

**потенциал пары $[Fe(C_2O_4)_3]^3 / [Fe(C_2O_4)_2]^2$ -

Карбонилы железа, кобальта, никеля

Правило Сиджвика (18е-):

Fe(CO) ₅ (тригональная бипирамида)	$3d^{6}4s^{2} + 10e^{-}(5CO)$
Ni(CO) ₄ (тетраэдр)	$3d^84s^2 + 8e^{-}(4CO)$
Co ₂ (CO) ₈ (K4(Co) =6)	3d ⁷ 4s ² + 8e ⁻ (4CO)+ связь Со-Со

Семинар «Элементы 11 группы (группа меди)»

	29 Cu	₄₇ Ag	79 Au
Электронная	$[Ar]3d^{10}4s^{1}$	$[Kr]4d^{10}5s^{1}$	$[Xe]4f^{14}5d^{10}6s^{1}$
конфигурация			
Металлический	1,28	1,44	1,44
радиус (КЧ 12), Å			
Ионный радиус			
(KЧ 6), Å			
\Im^+	0,77	1,15	1,37
\Im^{2+}	0,73	0,94	-
Θ^{3+}	0,54	0,75	0,85
I ₁ , эВ	7,73	7,58	9,22
Содержание в			
земной коре,	$6,8^{-}10^{-2}$	8 [.] 10 ⁻⁴	$4^{\cdot} 10^{-5}$
масс. %			

Основные характеристики элементов

Физико-химические константы простых веществ элементов группы меди

		1 V	
	Cu	Ag	Au
Плотность (20°С),	8,95	10,49	19,32
Γ/cM^3			
Т _{пл} , оС	1083	961	1064
Т _{кип} ,°С	2570	2155	2808
Модуль Юнга, ГПа*	129,8	82,7	78,5
$\Delta H^{\circ}{}_{BO3\Gamma},$	337	284	379
кДж/моль			
Удельное	1,673	1,59	2,35
электрическое			
сопротивление			
(20°С), мкОм∙см			

*мягкие, ковкие и пластичные металлы (для сравнения, модуль Юнга для стали 208 ГПа)

Фазовая диаграмма «медь-золото»

Структурные искажения коодинационного полиэдра Cu(II) (Эффект Яна-Теллера)

Соединение	Длины экваториальных	Длины аксиальных
	связей, Å	связей, Å
CuF ₂	1,93 (4 F)	2,27 (2 F)
CuCl ₂	2,30 (4 Cl)	2,93 (2 Cl)
CuBr ₂	2,40 (4 Br)	3,18 (2 Br)
Na ₂ CuBr ₄	1,91 (4 Br)	2,37 (2 Br)
KCuF ₃	2,07 (4 F)	1,96 (2 F)
CuCl ₂ ·4H ₂ O	2,28 (2 Cl), 1,93 (2 H ₂ O)	2,95 (2 Cl)
Cu(NH3)4SO4·2H2O	2,05 (4 NH ₃)	2,59 (H ₂ O), 3,37 (H ₂ O)
$\left[\operatorname{Cu}(\mathbf{NH}_{3})_{6}\right]^{2+}$	2,07 (4 NH ₃)	2,62 (2 NH ₃)

<u>Семинар «Элементы 12 группы (группа цинка)»</u>

	₃₀ Zn	48 Cd	₈₀ Hg
Электронная	$[Ar]3d^{10}4s^2$	$[Kr]4d^{10}5s^2$	$[Xe] 4f^{14}5d^{10}6s^2$
конфигурация			
Металлический	1,34	1,51	1,51
радиус (КЧ 12), Å			
Ионный радиус			
(KY 6), Å			
Θ^+	-	-	1,19
\Im^{2+}	0,74	0,95	1,02
I ₁ , эВ	9,39	8,99	10,44
Содержание в			
земной коре,	7,6 ⁻ 10 ⁻³	$1,6\cdot 10^{-5}$	$8^{\cdot} 10^{-6}$
масс. %			

Основные характеристики элементов

Физико-химические константы простых веществ элементов группы цинка

	Zn	Cd	Hg
Плотность (25°С), г/см ³	7,14	8,65	13,53
T_{nn} ,°C	419,5	320,8	-38,9
Т _{кип} ,°С	907	765	357
$_{\Delta}$ H° _{возг} , кДж/моль	129	112	61
Удельное электрическое сопротивление (20°С), мкОм·см	5,8	7,5	95,8

Свойства оксидов элементов группы цинка

Оксид	Окраска	Т _{пл} , °С	Кристаллическая	Метод синтеза
			структура	
ZnO	Белая	1975	Типа вюрцита	$ZnCO_3 \rightarrow ZnO + CO_2 (300^{\circ}C)$
CdO	Коричневая	900*	Типа NaCl	$Cd(OH)_2 \rightarrow CdO + H_2O (180^{\circ}C)$
HgO	Желтая или	400**	Зигзагообразные	$2Hg + O_2 = 2HgO$
	красная		цепи	$HgCl_2 + 2NaOH = HgO\downarrow +$
			Hg-O…Hg-O…	$2NaCl + H_2O$

*возгоняется

**с разложением

Ион Hg₂²⁺

 $Hg_{2}^{2+}+2SCN^{-}=Hg\downarrow +Hg(SCN)_{2}$ $Hg_{2}^{2+}+2F^{-}+H_{2}O=Hg\downarrow +HgO +2HF$ $Hg_{2}^{2+}+4I^{-}=Hg\downarrow +[HgI_{4}]^{2-}$

Соединения со связью Hg-N

 Hg_2^{2+} + 2NH₃=Hg↓ + HgNH₂⁺ + NH₄⁺ HgCl₂ + 2NH₃ (+ NH₄⁺) → [Hg(NH₃)₂Cl₂] - плавкий белый преципитат (осадок) к.ч. Hg = 6 (*длина связи* Hg - N = 2,03 Å, Hg - Cl = 2,87 Å) [Hg(NH₃)₂Cl₂] ↔ NH₄Cl + [Hg(NH₂)Cl] - неплавкий белый преципитат 2 HgO + NH₃ + H₂O = [Hg₂N](OH)·2H₂O При 110°С превращается в коричневый моногидрат, основание Миллона. Оксоацетат цинка

Изоморфен Be₄O(OAc)₆, но быстро гидролизуется в воде.