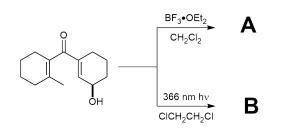
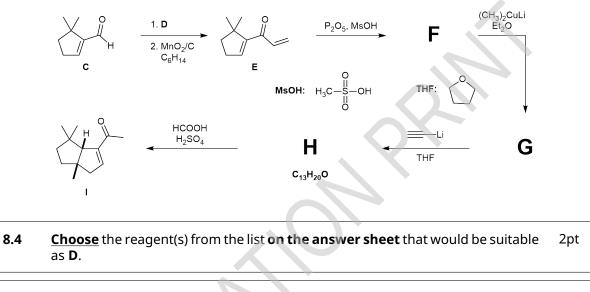
Theory


Nazarov Reaction

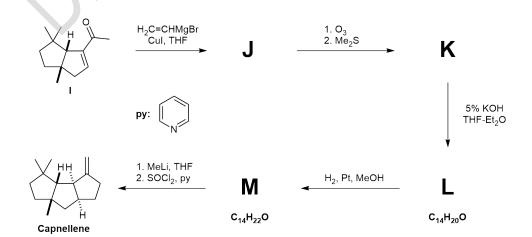
5% of total							
Question	8.1	8.2	8.3	8.4	8.5	8.6	Total
Points	5	2	6	2	8	8	31
Score							

The Nazarov reaction is a frequently used reaction of divinyl ketones to give cyclopentenones. It proceeds either photochemically or via acid catalysis and is an electrocyclization, followed by a proton transfer.

- **Draw** the pi molecular orbitals to describe the Nazarov reaction. Fill in the electrons into the respective energy levels. Mark with an X the i) HOMO (highest occupied molecular orbital) and ii) LUMO (lowest unoccupied molecular orbital). For this exercise, you can consider the divinyl ketone as a pentadienyl cation with five p-orbitals.
- **8.2** From the pi molecular orbitals you derived in **Task 8.1**, **predict** under which 2pt conditions the Nazarov reaction of the divinyl ketone will proceed in a disrotatory or conrotatory fashion. In the **table on the answer sheet**, **mark** with an X the conditions under which the reaction is allowed.
- **8.3** The Nazarov reaction was used as key reaction in a synthesis of Farnesin. For 6pt both conditions below, <u>draw</u> one possible structure for each of **A** and **B**, including stereochemistry. Note that the products of both reactions show a signal at 6.70 6.73 ppm in the ¹H NMR.


Theory

55[™] INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023



The synthesis of Capnellene commences with unsaturated aldehyde **C** shown below. Treatment with conditions **D**, followed by reaction with MnO_2 supported on carbon gave divinyl ketone **E** shown below. Exposure to a mixture of P_2O_5 and MsOH yielded **F**, which was elaborated via a sequence of reactions to the unsaturated ketone **I**.

8.5 <u>**Give**</u> the structures of intermediates **F**, **G**, and **H**, including their stereochem- 8pt istry.

Enone **I** was then subjected to $H_2C=CHMgBr$ and CuI in THF to give intermediate **J**, followed by ozonolysis to yield intermediate **K**, which shows a signal at 9.61 ppm in the ¹H NMR. Treatment with 5% KOH in a mixture of THF and ether yielded intermediate **L**. Hydrogenation with a Pt-catalyst and under an atmosphere of H_2 yielded **M**, which finally gave rise to Capnellene.

Theory

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

8.6	<u>Give</u> the structures of J, K, L, and M, including their stereochemistry.	8pt
8.6	<u>Give</u> the structures of J, K, L, and M, including their stereochemistry.	8p

OFFICATION