Theory

Molecular Imaging

5% of total											
Question	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10	Total
Points	1	2	2	1	1	2	4	4	2	3	22
Score											

Molecular imaging is a powerful tool in medical diagnostics. The nuclear isomer ^{99m}Tc (m = metastable) of the isotope ^{99g}Tc (g = ground state) has excellent radiation properties (γ – emitter, $t_{1/2}$ = 6.015 h) for radioimaging. ^{99m}Tc is obtained by β^- decay of a mother nuclide in a so-called technetium generator as ^{99m}Tc-pertechnetate [^{99m}TcO₄]⁻.

1.1 Identify the mother nuclide (A) of 99m Tc and and the emitted particle (B). 1.0pt $\overline{A} \rightarrow {}^{99m}$ Tc + B

Theory

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

The redox potentials of the group seven elements manganese (**Mn**), technetium (**Tc**) and rhenium (**Re**) follow the general trend in the periodic tables (see **Figure 2** below).

Figure 2: Latimer diagram of the manganese triad for acidic conditions vs. standard hydrogen electrode (SHE), potentials given in Volt.

1.3	<u>Calculate</u> the two missing redox potentials i) and ii).						

- **1.4** Compare $[MnO_4]^-$, $[TcO_4]^-$ and $[ReO_4]^-$. **Choose** the strongest oxidizing agent 1.0pt and **tick** your answer on the answer sheet.
- **1.5** Based on the values indicated by **Figure 2** above, <u>select</u> if TcO_2 would dispro-1.0pt portionate to Tc and TcO_4^{2-} under acidic conditions.

Tc and Re complexes at the oxidation state +V (d^2 systems) which contain a terminal oxo- (O=) or nitridoligand (N=) are diamagnetic. The scheme on the answer sheet shows three possible molecular orbital energy diagrams.

1.6 <u>**Choose**</u> which orbital energy diagram explains the observed diamagnetism and 2.0pt <u>**tick**</u> your answer. <u>**Draw**</u> the corresponding electron configuration in the correct diagram on your answer sheet.

 $((C_4H_9)_4N)[^{99g}TcO_4]$ is a colorless powder. By the addition of conc. HCl this common starting compound for ^{99g}Tc chemistry is converted into the green complex $((C_4H_9)_4N)[^{99g}TcOCl_4]$.

1.7 <u>Write</u> down both oxidation and reduction half-reactions using the formulas of 4.0pt ions or neutral molecules, and the complete redox reaction.

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

All ^{99m}Tc radiotracers in clinics are prepared in "one pot" reactions, applying commercialized kits (^{99m}Tc t1/2= 6.015 h). Typically, an eluate of a ^{99m}Tc generator has an activity of 12.5 GBq (GBq = giga Becquerel= 10^9 decays per second).

1.8 <u>**Calculate**</u> how many mol ^{99m}Tc are present in such samples. 4.0pt

For standard imaging, around $200 \text{ MBq}^{99\text{m}}$ Tc are administered to the patient.

1.9 Assume that no activity is lost through excretion. <u>**Calculate**</u> how many hours 2.0pt the patient has to wait until the injected activity decreases to under 1% of the starting activity.

Bioconjugation of radiometals is a chemical challenge. A recent example is the (3+2) cycloaddition of $[^{99m}TcO_3(tacn)]^+$ (**A**) (tacn = 1,4,7-triazacyclononane) with alkenes. In this context (3 + 2) refers to the number of atoms involved and not to the numbers of electrons. The following scheme shows an example of this reaction by labeling a protected carbohydrate.

2 H R ^{[99m}TcO₄] Α В - H2O R = sugar

1.10 Draw the structures of compound **A** and **B** on your answer sheet. Further, **state** 3.0pt the oxidation state of the technetium in these compounds.