

General Instructions

- This examination has **10 problems**.
- Each signal is given by the ringing of a cowbell.
- You may begin working as soon as the **START** command is given. You will then have **5 hours** to complete the exam.
- All results must be written in the appropriate answer boxes with pen on the **answer sheets**. Use the back of the question sheets if you need scratch paper. Remember that answers written outside the answer boxes will not be graded.
- Write relevant calculations in the appropriate boxes when necessary. Full marks will be given for correct answers only when your work is shown.
- For the multiple choice questions, **if you want to change your answer**, fill the tick box completely and then make a **new box next to it**.
- Use only the pen and calculator provided.
- The official English version of this examination is available on request for clarification only.
- The supervisors will announce a **30-minute** warning before the **STOP** command.
- You **must stop** working when the **STOP** command is given. Failure to stop writing can lead to the nullification of your examination.
- After the supervisor tells you to do so, put **all sheets with the cover sheet on top** back into the envelope. **Do not** seal the envelope.
- You are not allowed to leave your working place without permission. If you need any assistance, raise the corresponding nonverbal communication card (see table below for meanings).
- **Do not** draw anything into or close to the QR codes.

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

Meanings of the non-verbal communication cards.

GOOD LUCK!

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

Problems and Grading Information

	Title	Question Pages	Answer Pages	Total Score	Percentage				
1	Molecular Imaging	3	4	22	5				
2	Electrochemical CO ₂ Reduction	4	5	33	5				
3	Artificial Photosynthesis	4	6	29	6				
4	Fluorinated and Hypervalent Compounds	6	4	34	6				
5	Hydrodesulfurization	3	4	34.5	7				
6	Direct Conversion of Methane to Methanol	3	5	32	7				
7	Enzyme Kinetics	3	5	34	7				
8	Nazarov Reaction	3	3	31	5				
9	Electrolysis in Organic Synthesis	6	5	29	6				
10	Switzerland - The Country of Pharmaceu- ticals	6	4	39	6				
Total				•	60				

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

Physical Constants and Equations

Constants

Planck constant	$h = 6.626 \cdot 10^{-34} \text{ J s}$
Boltzmann constant	$k_B = 1.381 \cdot 10^{-23} \rm ~kg~m^2~s^{-2}~K^{-1}$
Speed of Light	$c = 2.998 \cdot 10^8 \text{ m s}^{-1}$
Elementary charge	$e = 1.602 \cdot 10^{-19} \text{ C}$
Avogadro constant	$N_A = 6.022 \cdot 10^{23} \ \mathrm{mol}^{-1}$
Universal gas constant	$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$
Faraday constant	$F = 96485 \text{ C mol}^{-1}$
Standard pressure	$p_0 = 1 \cdot 10^5 \ \mathrm{Pa} = 1 \ \mathrm{bar}$
SHE:	Standard Hydrogen Electrode ($p=1~{ m bar}$)
Electronvolt	$1 \text{ eV} = 1.602 \cdot 10^{-19} \text{ J}$
Electric Charge & Current	$1 C = 1 A \cdot 1 s$
Absolute zero	$0 \text{ K} = -273.15 ^{\circ}\text{C}$
Ångstrom	$1 \text{ Å} = 10^{-10} \text{ m}$
pico (p)	10^{-12}
nano (n)	10^{-9}
micro (µ)	10^{-6}
milli (m)	10^{-3}
centi (c)	10^{-2}
deci (d)	10^{-1}
kilo (k)	10^{3}
mega (M)	10^{6}
giga (G)	10^{9}
tera (T)	10 ¹²
Ρί (π)	$\pi = 3.141592$
Euler's number	e = 2.718281

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

Equations

Ideal gas law	$pV = nRT = Nk_BT$						
	$\Delta G = \Delta H - T \Delta S$						
Gibbs free energy	$\Delta G^{\circ} = -RT \ln K^{\circ}$						
dibbs nee energy	$\Delta_r G^\circ = -nFE^\circ_{cell}$						
	where n is the number of electrons						
	$\Delta_r G = \Delta_r G^\circ + RT \ln Q$						
Reaction quotient Q for reaction: $aA+bB \rightleftharpoons cC+dD$	$Q = \frac{[] D]}{[A]^a [B]^b}$						
Nernst equation	$E = E_0 - \frac{RT}{nF} \ln Q$						
Electric current	I = Q/t						
Faraday equation	$I \cdot t = n \cdot z \cdot F$						
Energy of charge q in electric field	$E = k \frac{q_1 q_2}{d}$						
Arrhenius law	$k = A \exp\left(rac{-E_A}{RT} ight)$						
Lambert Beer equation	$A = \log(I_0/I_1) = \varepsilon \cdot l \cdot c$						
Henderson-Hasselbalch equation	$\mathrm{pH} = \mathrm{pK}_{\mathrm{a}} + \log(\frac{[A^-]}{[HA]})$						
Energy of a photon	$E = h\nu = \frac{hc}{\lambda}$						
Integrated rate laws for							
zeroth order	$[A] = [A]_0 - kt$						
first order	$\ln[A] = \ln[A]_0 - kt$						
second order	$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$						
Half life for a first order reaction	$t_{1/2} = \frac{\ln 2}{k}$						
Half life for a second order process	$t_{1/2} = \frac{1}{[A]_0 k}$						
Radioactivity	$A = k \cdot N$						
Surface area of a sphere with radius R	$A = 4\pi R^2$						
Volume of a sphere with radius R	$V = \frac{4\pi}{3}R^3$						

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

Periodic Table of the Elements

2 He	4.003	10	Ne	20.18	18	Ar	39.95	36	Kr	83.80	54	Xe	131.29	86	Rn	[212]	118	O_{g}	[294]							
		6	[II.	19.00	17	CI	35.45	35	Br	79.90	53	Ι	126.90	85	At	[210]	117	Ts	[294]			97	m		6]	
		×	0	16.00	16	S	32.06	34	Se	78.97	52	Te	127.60	84	Po	[209]	116	Lv	[293]	71	Lu	05 174.	2 103	E	9] [260	
		7	N	14.01	15	Р	30.97	33	As	74.92	51	Sb	121.76	83	Bi	208.98	115	Mc	[290]	20	L A	93 173.	1 10:	I Nc	8] [25	
		9	C	12.01	14	Si	28.09	32	Ge	72.63	50	Sn	118.71	82	Ъb	207.2	114	H	[289]	69	III.	26 168.	0 10	Mc	7] [25	
		S	В	10.81	13	AI	26.98	31	Ga	69.72	49	In	114.82	81	H	204.38	113	Nh	[286]	68	Er	93 167.	100	Ŧ	2] [25]	
								30	Zn	65.38	48	Cd	112.41	80	Hg	200.59	112	Cn	[285]	67	H	50 164.	66	ES	1] [252	
								29	Cu	63.55	47	Ag	107.87	79	Au	196.97	111	Rg	[282]	99	D	93 162.	98	C	7] [25]	
								28	Ni	58.69	46	Ъd	106.42	78	Pt	195.08	110	Ds	[281]	65	đ	25 158.	67	Bk	7] [247	
								27	ပိ	58.93	45	Rh	102.91	77	Ir	192.22	109	Mt	[278]	64	B	96 157.	96	Cu	3] [24]	
								26	Fe	55.85	44	Ru	101.07	76	Os	190.23	108	Hs	[270]	63	1 Eu	36 151.	. 02	An	4] [24:	
								25	Mn	54.94	43	Tc	[98]	75	Re	186.21	107	Bh	[270]	62	n Sm	5] 150.3	3 94	- Du	7] [24	
								24	C	52.00	42	Mo	95.95	74	Μ	183.84	106	S_{g}	[269]	0	d Pn	.24 [14	2 93	N N	.03 [23	
								23	٧	50.94	41	Ŋ	92.91	73	Ta	180.95	105	Db	[268]	9 0	r Z	.91 140	1 9	a I	.04 238	
								22	ij	47.87	40	Zr	91.22	72	Hf	178.49	104	Rf	[267]	80 20	e F	.12 140	6	h h	2.04 2.31	
								21	Sc	44.96	39	Υ	88.91		57-71			89–103		2	a	.91 14(6	L C	27] 232	
		4	Be	9.01	12	M_8	24.31	20	Ca	40.08	38	Sr	87.62	56	Ba	137.33	88	Ra	[226]	0	Γ	136	8	A	[2]	
1 H	1.008	m	Li	6.94	11	Na	22.99	19	K	39.10	37	Rb	85.47	55	Cs	132.91	87	Fr	[223]							

Table of NMR Chemical Shifts

¹H NMR Chemical Shifts

GO-8 English (Official)

¹H NMR Coupling Constants

Type of hydrogen	J _{ab} (Hz)
R ₂ CH _a H _b	4-20
R_2CH_a - CR_2H_b	2-12
R_2CH_a - CR_2 - CR_2H_b	If rotation free: < 0.1 Otherwise (fixed): 1-8
RH _a C=CRH _b	cis: 7-12 trans: 12-18
R ₂ C=CH _a H _b	0.5-3
RH _a C=CR-CR ₂ H _b	0.5-2.5

List of Amino Acids

Possible translations for the English expressions in the figure above.