55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

Enzyme Kinetics - Answer Sheet

7% of total							
Question	7.1	7.2	7.3	7.4	7.5	Total	
Points	3	4	2	8	17	34	
Score							

7.1 (3 pt) <u>Choose</u> the correct alternative form	m(s) of the initial rate ($v_{ m 0}$)	expressions (1) and (2):					
$\Box v_0 = \frac{k_3[\mathbf{E}]_0[\mathbf{S}]_0}{[\mathbf{S}]_0 + K_M}$	$\Box v_0 = \tfrac{k_3[\mathbf{E}]}{1+K_M/[\mathbf{S}]_0}$	$\Box v_0 = j[\mathbf{ES}]_{\max}$					
$\Box v_0 = \frac{k_3[\mathbf{E}]_0[\mathbf{ES}]_{\max}}{[\mathbf{S}]_0 + K_M}$	$\Box v_0 = \tfrac{k_3[\mathbf{E}]_0}{1+K_M/[\mathbf{S}]_0}$	$\Box v_0 = \frac{j[\mathbf{E}]_0}{K_M + [\mathbf{S}]_0}$					
7.2 (4 pt) Choose the pair(s) of axes (y vs. x) that are expected to give a linear plot:							
$\Box v_0$ vs. $1/[\mathbf{S}]_0$	$\Box v_0$ vs. v_0/K_M	$\Box v_0$ vs. K_M/v_0					
$\Box 1/v_0$ vs. $v_0/[\mathbf{S}]_0$	$\Box 1/v_0$ vs. v_0/K_M	$\Box \left[\mathbf{S} ight]_0 / v_0$ vs. $\left[\mathbf{S} ight]_0$					

A7-2 English (Official)

7.3 (2 pt)**Show** that equation (3) takes the MM form (1) if the concentration of substrate **B** is maintained at a constant value c_0 :

 $\underline{\textbf{Give}}$ the expression for v_{\max} in this case:

 $v_{\rm max}$

A7-3 English (Official)

7.4 (8 pt)

Propose a kinetic scheme for the Enzymatic System I consistent with equation (3), showing all the intermediates and products. **Indicate** the reaction with a rate constant k.

7.5 (17 pt) <u>**Fill**</u> in the table:

	Number of k ₁		k ₂	k ₃	K _M
S _A					
SB					
Sc		$1.57 \cdot 10^7 \text{ M}^{-1} \text{s}^{-1}$			

55[™] INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

7.5 (cont.) <u>**Provide**</u> your calculations:

A7-5 English (Official)

