Enzyme Kinetics - Answer Sheet

7% of total						
Question	7.1	7.2	7.3	7.4	7.5	Total
Points	3	4	2	8	17	$\mathbf{3 4}$
Score						

7.1 (3 pt)

Choose the correct alternative form(s) of the initial rate (v_{0}) expressions (1) and (2):
$\square v_{0}=\frac{k_{3}[\mathbf{E}]_{0}[\mathbf{S}]_{0}}{[\mathbf{S}]_{0}+K_{M}}$
$\square v_{0}=\frac{k_{3}[\mathbf{E}]}{1+K_{M} /[\mathbf{S}]_{0}}$
$\square v_{0}=j[\mathbf{E S}]_{\max }$
$\square v_{0}=\frac{k_{3}[\mathbf{E}]_{0}[\mathbf{E S}]_{\text {max }}}{[\mathbf{S}]_{0}+K_{M}}$
$\square v_{0}=\frac{k_{3}[\mathbf{E}]_{0}}{1+K_{M} /[\mathbf{S}]_{0}}$
$\square v_{0}=\frac{j[\mathbf{E}]_{0}}{K_{M}+[\mathbf{S}]_{0}}$
7.2 (4 pt)

Choose the pair(s) of axes (y vs. x) that are expected to give a linear plot:
$\square v_{0}$ vs. $1 /[\mathbf{S}]_{0}$$v_{0}$ vs. v_{0} / K_{M}
$\square v_{0}$ vs. $K_{M} / v_{0}$$1 / v_{0}$ vs. $v_{0} /[\mathbf{S}]_{0}$
$\square 1 / v_{0}$ vs. v_{0} / K_{M}
$\square[\mathbf{S}]_{0} / v_{0}$ vs. $[\mathbf{S}]_{0}$

Theory

7.3 (2 pt)

Show that equation (3) takes the MM form (1) if the concentration of substrate \mathbf{B} is maintained at a constant value c_{0} :

Give the expression for $v_{\text {max }}$ in this case:

Theory
7.4 (8 pt)

Propose a kinetic scheme for the Enzymatic System I consistent with equation (3), showing all the intermediates and products. Indicate the reaction with a rate constant k.
7.5 (17 pt)

Fill in the table:

	Number of active sites	$\boldsymbol{k}_{\mathbf{1}}$	$\boldsymbol{k}_{\mathbf{2}}$	$\boldsymbol{k}_{\mathbf{3}}$	$\boldsymbol{K}_{\boldsymbol{M}}$
\mathbf{S}_{A}					
$\mathbf{S}_{\mathbf{B}}$					
\mathbf{S}_{C}					

Theory

English (Official)

7.5 (cont.)
 Provide your calculations:

Theory

7.5 (cont.)

