

Hydrodesulfurization - Answer Sheet

7% of total							
Question	5.1	5.2	5.3	5.4	5.5	5.6	Total
Points	2.5	3	3.5	5	8	12.5	34.5
Score							

	Score								
5.1 (2.5 pt)									\
<u>Draw</u> the struct	•		E of thic	phene	hydrode	sulfuriz	ation, kr	nowing t	hat A and B are
cyclic regioisomers and C is cyclic									

Α	В	С	D	Е
		$\mathcal{A}(\mathcal{O})$		

5.2 (3 pt)
Considering only the isotopes listed in the question sheet, <u>list</u> all isotopologues of H ₂ S.

5.3 $(3.5~\mathrm{pt})$ Considering only the isotopes listed the question sheet, <u>list</u> all isotopologue of H ₂ S containing simultaneously D and ³⁴ S nuclei and for each <u>calculate</u> the respective relative molar abundance in %.					
%					
5.4 $(5~{ m pt})$ <u>Calculate</u> the number of exchanged sulfur atoms $n(S)_{ m surface}$, give your answer in mol.					
$n(S)_{ m surface} = $ mol					

5.5 $(8 \mathrm{pt})$ Calculate the particle radius R of the MoS_2 particles, give your answer in nm.				
5.5 (cont.)				
$R = \underline{\hspace{2cm}}$ nm				

56	(12.5)	nt)
5.6	(12.5	nt)

Using $R=35.0~\mathrm{nm}$ as the radius and the data of the exchange experiment described on the question sheet, **calculate** the diffusion coefficient D for the diffusion of sulfur atoms in MoS₂, give your answer in $\mathrm{m^2~s^{-1}}$. In your calculations, use the following approximation: $e^x\approx 1+x$ for $x\ll 1$.

