

Fluorinated and Hypervalent Compounds - Answer sheet

6% of total										
Question	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	Total
Points	4	4	4	2	6	4	1	4	5	34
Score										

4.2 (4.0 pt) <u>**Choose**</u> which elements E^5 / E^6 and E^7 / E^8 , respectively, would display the given molecular geometry, including E-F bond distances close to those in **1**. **E**⁵= **E**⁶= **E**⁷= **E**⁸=

4.3 (4.0 pt)

Specify the ideal geometry of compound **6** in terms of the arrangement of the valence-shell electronpair domains around the Te atom. **Tick** one of the following boxes:

🗆 square planar

trigonal bipyramidal

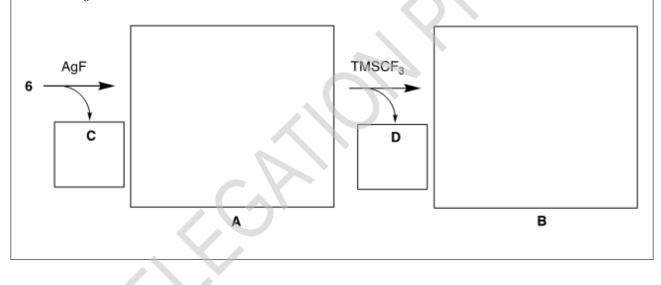
tetrahedral

🗆 square pyramidal

🗆 octahedral

<u>**Provide**</u> the expected ideal bond angles C^1 -Te-I, C^2 -Te-I, I-Te-O, and C^1 -Te- C^2 .

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023


4.4 (2.0 pt)

<u>Write</u> the number of ¹H-NMR signals you expect for the two methyl groups in compounds **4** and **6** respectively.

Compound 4 :	signal(s)	Compound 6 :	signal(s)

4.5 (6.0 pt)

Formulate the Te-containing intermediate **A** and final product **B**, including their correct geometry, as well as the byproducts **C** and **D**. **Draw** the intermediates and **write** the by-products. *Hint: MW of* **D** is 92.08 $g \mod^{-1}$.

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

4.6 (4.0 pt)

Draw the structure of both the Te-containing cation and the boron-containing anion and and tick the box corresponding to the ideal geometry of the cation in terms of the arrangement of the valenceshell electron-pair domains around the Te atom. Hint: Use for compound 8 (chiral, enantiomerically pure) the generic schematic representation given in the question sheet.

cation	anion
Tick the box containing the ideal molecular stru	cture
🗆 square-planar	
🗆 trigonal-planar	

- tetrahedral
- □ trigonal-pyramidal
- □ trigonal-bipyramidal

4.7 (1.0 pt)

.

Write the number of possible stereochemically different salts 9.

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

4.8 (4.0 pt)

Formulate balanced half-cell reactions and a balanced overall reaction for this process. *Hint: Abbreviate* **10** as R-I and **12** as R-IF₂ and TCICA as $C_3CI_3N_3O_3$. The six-membered ring of TCICA stays intact upon reduction.

4.9 (5.0 pt)

Determine how fast the IF₂ group can in principle rotate at room temperature (298 K). Consider this process as if it were a chemical reaction for which you are determining the rate constant. The unit of the constant should be given in s^{-1} .