

Electrochemical CO₂ Reduction

5% of total								
Question	2.1	2.2	2.3	2.4	2.5	2.6	2.7	Total
Points	2	8	3	3	5	8	4	33
Score								

2.1 (2 pt)

<u>Write and balance</u> the chemical equation of the half-cell reactions for the following electrochemical reduction processes in acidic environment (i) CO_2 to ethanol; (ii) CO_2 to *n*-propanol.

(i)

(ii)

2.2 (8 pt)

<u>**Combine**</u> the half-cell of the reduction process with an $H_2/2H^+$ half-cell where the latter acts as anode. <u>**Calculate**</u> the value of the standard cell potential of the CO₂ to **ethanol** reduction.

 $E_{(CO_2 \text{ to ethanol})}$

V

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

 $2.3~(3~{\rm pt})$ \underline{Write} all the reduction and oxidation half-cell reactions taking place at the cathode and the anode, respectively. Anode reaction(s):

Cathode reaction(s):

2.4 (3 pt)

Considering this mechanism, **assign** the correct deposition time to the Cu foams shown in **Figure 2** below (white boxes upper left corner).

A2-3 English (Official)

%

2.5 (5 pt) <u>**Calculate</u>** the Faradaic efficiency (FE in %) of this metal deposition process. FE is defined as $\overline{Q_{\mathrm{product}}/Q_{\mathrm{total}}} \cdot 100\%$. *Q* denotes the charge.</u>

FE =

55[™] INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

2.6 (8 pt)

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

 $V_{H_2} =$

 cm^{3}

2.7 (4 pt)

<u>Calculate</u> the volume of the formed hydrogen on the 1 cm² catalyst area at 298.15 K and 1 bar, assuming ideal behavior of the formed hydrogen, and its complete release into the gas phase. If you did not get a result in **Task 2.5**, continue with $FE_{(EtOH)} = 45.1\%$ and $FE_{(PrOH)} = 4.8\%$.