Theory

Switzerland - The Country of Pharmaceuticals - Answer Sheet

6% of total								
Question	10.1	10.2	10.3	10.4	10.5	10.6	10.7	Total
Points	2	11	6	6	6	6	2	39
Score								

10.1 (2 pt)	0.1 (2 pt)	۱
--------------------	-------	-------	---

<u>Determine</u> the number of stereogenic centers (*n*) in Pasireotide (1). <u>Calculate</u> the total number of all possible stereoisomers (*t*) of Pasireotide (1).

n =			

t =

Theory

A
В
C
D

10.3 (6 pt) Choose the linker(s) 4 that are appropriate for SPPS of peptide 2 according to Scheme 1 in the question sheet. Incorrect answers will result in deductions of points but the total score may not be negative. 2-Chlorotrityl-chloride linker (a) Safety-catch linker (b) Rink amide linker (c) SASRIN-chloride linker (d) Sieber amide linker (e) Wang linker (f)
10.4 (6 pt) Choose the most suitable side-chain protecting groups PG-1 and PG-2 for SPPS of 2 according to Scheme 1 in the question sheet that can be orthogonally cleaved in the presence of all other functional groups present in Pasireotide. Only one answer is correct for each of the protecting groups. PG-1
10.5 (6 pt) Choose the correct statement(s) about the cyclization of peptide 2 to 8. Incorrect answers will result in deductions of points but the total score may not be negative. A possible side-product of the reaction is tetramethylguanidylation of the N-terminal phenylalanine residue resulting in compound 9. A possible side-product of the reaction is the cleavage of protecting group PG-1 and cyclization via the amino group of the lysine residue to give compound 10. The reaction must be carried out at a high peptide concentration to achieve a sufficient reaction rate. The reaction must be carried out at a low peptide concentration to prevent polycondensation. Piperidine (11) is a suitable base for the reaction.

Theory

10.6 (6 pt) Draw the str mediate 8 as the question	uctures of intermediate E (including stereochemistry) and reagent F . Abbreviate inter- (vii) and the protecting group as PG-1 in structures E and F as depicted in Scheme 5 in sheet.
	E
	F
10.7 (2 pt) Determine to conversion of the conv	he <u>lowest</u> possible molar equivalents of compound 12 that are necessary to enable full f 8 to 13 .