

Molecular Imaging Answer Sheet

5% of total											
Question	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10	Total
Points	1	2	2	1	1	2	4	4	2	3	22
Score											

1.1 (1.0 pt)

Identify the mother nuclide (**A**) of 99m Tc and and the emitted particle (**B**). $\overline{\mathbf{A}} \rightarrow {}^{99m}$ Tc + **B**

A=

B=

1.2 (2.0 pt)**Provide** the oxidation states of the radiometal in the ^{99m}Tc-probes given in the **question sheet**.

a)

b)

c)

d)

 $\ensuremath{\textbf{1.3}}\xspace(2.0\ensuremath{\,\text{pt}}\xspace)$ $\ensuremath{\textbf{Calculate}}\xspace$ the two missing redox potentials i) and ii).

i)

ii)

1.4 (1.0 pt) Compare [MnO₄]⁻, [TcO₄]⁻ and [ReO₄]⁻. <u>Choose</u> the strongest oxidizing agent and <u>tick</u> your answer. □ [MnO₄]⁻ □ [TcO₄]⁻ □ [ReO₄]⁻

55TH INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

1.5 (1.0 pt)

Based on the values indicated by **Figure 2** in the question sheet, <u>select</u> if TcO_2 would disproportion-ate to Tc and TcO_4^{2-} under acidic conditions.

 \Box yes

□ no

1.6 (2.0 pt)

1.6 (2.0 pt) <u>**Choose</u>** which orbital energy diagram explains the observed diagram. <u>**Draw**</u> the corresponding electron configuration in the correct diagram.</u> **<u>Choose</u>** which orbital energy diagram explains the observed diamagnetism and **<u>tick</u>** your answer.

Ε			
	a)	b)	c) $\frac{1}{d_{x^2-y^2}}$
		$d_{x^2-y^2}$ d_{z^2}	
	$\overline{d_{x^2-y^2}}$		d_{z^2}
	d _{xz} d _{yz}		d _{xy}
		d_{xy} d_{xz} d_{yz}	
4	d _{xy}		d_{xz} d_{yz}

A1-3 English (Official)

1.7 (4.0 pt)

<u>Write</u> down both oxidation and reduction half-reactions using the formulas of ions or neutral molecules, and the complete redox reaction.

Reduction half-reaction:

Oxidation half-reaction:

Complete redox-reaction:

1.8 (4.0 pt)**Calculate** how many mol ^{99m}Tc are present in such samples.

mol

A1-4 English (Official)

h

1.9 (2.0 pt)

Assume that no activity is lost through excretion. <u>**Calculate**</u> how many hours the patient has to wait until the injected activity decreases to under 1% of the starting activity.

1.10 (3.0 pt)

<u>**Draw**</u> the structures of compound **A** and **B**. Further, <u>**state**</u> the oxidation state of the technetium in these compounds.

Oxidation state A:

t =

Oxidation state B: