Theory

Molecular Imaging Answer Sheet

5% of total																
Question	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10	Total					
Points	1	2	2	1	1	2	4	4	2	3	$\mathbf{2 2}$					
Score																

1.1 (1.0 pt)

Identify the mother nuclide (A) of ${ }^{99 m} \mathrm{Tc}$ and and the emitted particle (B).
$\mathbf{A} \longrightarrow{ }^{99 \mathrm{~m}} \mathrm{Tc}+\mathbf{B}$
$\mathrm{A}=$
$\mathrm{B}=$
1.2 (2.0 pt)

Provide the oxidation states of the radiometal in the ${ }^{99 m}$ Tc-probes given in the question sheet.
a)
b)
c)
d)
1.3 (2.0 pt)

Calculate the two missing redox potentials i) and ii).
i)
ii)
1.4 (1.0 pt)

Compare $\left[\mathrm{MnO}_{4}\right]^{-},\left[\mathrm{TcO}_{4}\right]^{-}$and $\left[\mathrm{ReO}_{4}\right]^{-}$. Choose the strongest oxidizing agent and tick your answer.
$\square\left[\mathrm{MnO}_{4}\right]^{-}$
$\square\left[\mathrm{TcO}_{4}\right]^{-}$
$\square\left[\mathrm{ReO}_{4}\right]^{-}$
1.5 (1.0 pt)

Based on the values indicated by Figure $\mathbf{2}$ in the question sheet, select if TcO_{2} would disproportionate to Tc and TcO_{4}^{2-} under acidic conditions.
\square yes
\square no
1.6 (2.0 pt)

Choose which orbital energy diagram explains the observed diamagnetism and tick your answer. Draw the corresponding electron configuration in the correct diagram.
E
a)
b)
C)
$d_{x^{2}-y^{2}}$
$\frac{-}{d_{x^{2}-y^{2}}} \frac{d_{z^{2}}}{}$

Theory

1.7 (4.0 pt)

Write down both oxidation and reduction half-reactions using the formulas of ions or neutral molecules, and the complete redox reaction.

Reduction half-reaction:

Oxidation half-reaction:

Complete redox-reaction:
1.8 (4.0 pt)

Calculate how many mol ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ are present in such samples.

Theory

1.9 (2.0 pt)

Assume that no activity is lost through excretion. Calculate how many hours the patient has to wait until the injected activity decreases to under 1% of the starting activity.

$$
t=
$$

\qquad h
1.10 (3.0 pt)

Draw the structures of compound \mathbf{A} and \mathbf{B}. Further, state the oxidation state of the technetium in these compounds.

Oxidation state A:
Oxidation state B :

